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Multi-color photons are prominent candidates for carrying quantum information, as their unlimited dimensionality
allows for novel qudit-based schemes. The generation and manipulation of such photons takes place in nonlinear optical
media, and the coupling between the different frequency bins can be engineered to obtain the desired quantum state.
Here, we propose the design of a frequency-domain Stern–Gerlach effect for photons, where quantum entanglement
between the spatial and spectral degrees of freedom is manifested. In this scheme, orthogonal frequency-superposition
states can be spatially separated, resulting in a direct projection of an input state onto the frequency-superposition basis.
We analyze this phenomenon for two-color qubits and three-color qutrits, and present a generalized wavelength-domain
analog of the Hong–Ou–Mandel interference with distinguishable photons. Our results pave the way toward realization
of single-element, all-optically controlled spectral-to-spatial beam splitters and tritters that can benefit quantum infor-
mation processing in the frequency domain. © 2018 Optical Society of America under the terms of the OSA Open Access
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1. INTRODUCTION

Nonlinear optical processes are widely used as platforms for the gen-
eration and manipulation of non-classical states of light. Entangled
photon pairs and squeezing are the most common examples [1],
though much attention has also been given to unitary operations
on frequency-domain states [2–10]. Sum-frequency generation
(SFG) [2], four-wave mixing [3–7], and electro-optic modulation
[8–10] were employed for the dynamic coupling between different
frequencies, allowing for high-fidelity spectral-to-spectral (i.e., where
both the input and output are in the same spatial mode) quantum
gates [10]. The recent interest in these photonic states as quantum
information carriers is motivated mainly by their potentially high
dimensionality and the ability to transmit them over long distances
in optical fibers and in free space. In spite of the growing advance-
ments in this field, quantum effects incorporating the spatial degree
of freedom, in a manner that allows for a spatially separated pro-
jection on frequency-basis eigenstates, have been rarely explored
to date. These spectral-to-spatial beam splitters are expected to ben-
efit scalability, particularly when higher dimensional qudits are con-
cerned, since they do not rely on additional optical elements such as
frequency converters, waveplates, and dichroic prisms.

In this paper, we demonstrate how paraxial photons in quad-
ratic nonlinear media are analogous to two-dimensional (2D)
massive particles carrying internal angular momenta (either spin
or orbital). These photons can interact with an external effective
field, the components of which are given by the external optical
pump fields coupling the different frequencies. For two-level pho-
tons, the dynamics coincides with the one described by the Pauli

equation for spin-1/2 particles, instead of the usual Schrödinger-
type analogy for paraxial propagation. Interestingly, the photon’s
spectral degree of freedom can become entangled with the spatial
ones through a spatial non-uniformity of the nonlinear coupling.

Here, we propose an analogous Stern–Gerlach (SG) effect for
photons, which has been recently described for classical light [11].
Such an effect allows for the spatial separation of orthogonal
frequency-superposition states, thereby realizing a projection of
the quantum state on a different basis otherwise inaccessible
within a single nonlinear interaction. We solve analytically for
the dynamics and simulate the first-order correlation function
of both qubit- and qutrit-photonic states undergoing the afore-
mentioned effect. It is shown that the quantum nature of light
is manifested in the form of coherent spatial superposition of
the single-photon state as well as two-photon paraxial bunching
of the Hong–Ou–Mandel (HOM) type. In contrast to the usual
HOM case, here the bunching occurs for photons that are distin-
guishable owing to their different frequencies. The effect proposed
herein allows for a realization, using a single optical element, of
spectral-to-spatial beam splitters and tritters, all-optically con-
trolled by the pump field, with applications to quantum informa-
tion processing in the frequency domain.

2. SG EFFECT FOR PHOTONIC QUBITS

For the sake of simplicity, we first treat the case of two-level pho-
tonic qubits. The results of this section can, for the most part, be
mapped onto the usual polarization subspace of photons that also
exhibits SU(2) symmetry. However, it is of great conceptual merit
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to discuss them. The crucial difference is that the polarization sub-
space has only two dimensions, whereas the frequency subspace has
unlimited dimensionality. The analysis of effects incorporating two
frequencies is merely the most simplified subset of the vast variety
of manipulations that can be done in this high-dimensional basis.
As presented in the following section, these ideas can be readily
generalized to effects that couple more than two frequencies.

Consider a quadratic nonlinear medium with a nonlinearity
coefficient χ�2�, where a sum-frequency generation (SFG) process
takes place. In such media, called nonlinear photonic crystals
(NLPCs), the χ�2� nonlinearity is periodically modulated along the
propagation direction with a reciprocal lattice constant 2π∕Λ,
where Λ is the modulation period. The magnitude of Λ is chosen
to satisfy the momentum conservation (or phase matching) via an
umklapp process for a specific three-wave mixing among the
frequencies ω1, ω2, and ω12 � ω2 − ω1 [12]. We denote the field
at frequency ω12 as the pump field, coupling modes 1 and 2. This
pump field will be considered a coherent state that is strong
enough that it can be assumed constant throughout the nonlinear
interaction. We shall denote ℏκ12 ∝ χ�2�

ffiffiffiffiffiffi
I 12

p
(I 12 being the

pump intensity) as the typical coupling energy for the interaction.
The dynamics of the aforementioned model is handled within

the paraxial quantum optics formalism [13]. This theory assumes
that the electric field operator E ��� can be expressed as a product
of a carrier wave ei�kjz−ωj t� and a slowly varying envelope (SVE)
operator given for each frequency ωj by

ϕj�r, t� �
Z
Q

d3q
�2π�3 a�kj � q�eiq·r−iδωj�q�t : (1)

In Eq. (1), a�k� is the usual annihilation operator with
�a�k�, a†�k 0�� � �2π�3δ�k − k 0�, kj the carrier wavenumber in-
side the dispersive medium (parallel to the ẑ axis), δωj�q�≡
ω�jkj � qj� − ωj, and the integration over q is restricted to a do-
main Q satisfying the paraxial approximation [13]. It is straightfor-
ward to see that the commutation relation �ϕj�r�,ϕ†

k�r 0�� �
δjkδ�r − r 0� holds whenever the different frequencies are spectrally
well-separated. Consequently, the paraxial SFG Hamiltonian is
written as

H SFG �
Z

d3r
X
j�1, 2

ℏvgjϕ
†
j

�
−i

∂
∂z

−
∇2

T

2kj

�
ϕj

−

Z
d3rℏκ12�ieiφ12ϕ†

1ϕ2 − ie−iφ12ϕ1ϕ
†
2�, (2)

where vgj is the group velocity of the jth frequency, ∇2
T � ∂2x � ∂2y

is the transverse Laplacian operator, and φ12 � −φ21 is a phase
associated with the pump field and the NLPC periodicity coupling
the modes 1 and 2. The first integral represents paraxial propaga-
tion of each wavepacket, while the second integral is the nonlinear
part of the Hamiltonian.

The considered wavepackets have a typical temporal length τ.
We assume that their propagation is limited to lengths much
smaller than the group velocity mismatch (GVM) distance, given
by LGVM � τ∕jv−1g1 − v−1g2j. Therefore, it is reasonable to neglect
the effects of temporal walk-off and consider the different
frequencies to travel at some mean group velocity v̄g. We now
introduce a spinor notation Φ � �ϕ1,ϕ2�T and rewrite our
Hamiltonian as

H SFG � ℏv̄g

Z
d3rΦ†

�
−i

∂
∂z

� 1

2
M−1p2 − Σ · B

�
Φ, (3)

where we denote p � −i∇T as the equivalent momentum oper-
ator, and Mij � δijkj is the mass matrix (with the carrier wave-
number being the analog of mass). The operator Σ is the Pauli
matrices vector, i.e., Σ ≡ �σx , σy, σz�. The quantity B is a three-
component vector comprised of the different interaction param-
eters. For this special case, we can define two of the components
of B via the coupling parameters, namely, Bx � �κ12∕v̄g� cos φ12

and By � �κ12∕v̄g� sin φ12 [14]. A third component, Bz �
Δk∕2, emerges when there exists a momentum mismatch
Δk � k2 − k1 − k12 − 2π∕Λ ≠ 0 between the interacting fields.

The system dynamics can be obtained by employing the
Heisenberg equation of motion iℏ∂tϕj � �ϕj,H SFG�:

i
∂
∂z

Φ�r, η� �
�
1

2
M−1p2 − Σ · B�r�

�
Φ�r, η�: (4)

Note that in Eq. (4) we switched the time t to η � v̄g t − z, a
coordinate traveling with the wavepacket. At first glance,
Eq. (4) is equivalent to the Schrödinger equation for a massive
2D particle, where the propagation coordinate z represents time.
This is a well-established analogy for paraxial propagation [15],
where, for the case of linear media, the variation in the refractive
index is equivalent to a scalar potential. However, in our case, the
field considered is vectorial rather than scalar, and is subject to an
external coupling B. Since the operator Σ generates SU(2) sym-
metry, the extended analogy, therefore, is to identify it with an
internal angular momentum degree of freedom of spin-1/2. The
latter induces the equivalent of a magnetic dipole μ ≡ Σ, which in
turn interacts with an effective magnetic field B (we emphasize
that this is an analogy, and no actual magnetic field is present).
The resulting dynamics is equivalent to the Pauli equation, de-
scribing the motion of a spin-1/2 particle in a magnetic field.

The key feature to consider here is that the effective magnetic
field Bmay vary in space, i.e., B � B�r�. This is due to the spatial
variation of the nonlinear coupling, either induced by the paraxial
mode profile of the pump beam, or by spatially varying the non-
linear coefficient. Such variation gives rise to correlations between
the spatial and spectral degrees of freedom for single-photon para-
xial modes, as will be demonstrated below for the simpler cases of
qubits and qutrits.

For two-frequency states, the Bloch sphere representation
(Fig. 1) and the role of the SFG process as a rotation of state

(a)

(b)

(c)

Fig. 1. (a), (b) A two-level photon may occupy two different frequen-
cies, coupled by an external pump field, and have a certain spatio-
temporal envelope. (c) The qubit state is represented by a point on
the Bloch sphere: pure frequency states are situated on the poles and
equal-superposition states lie on the equator. The magnetic field analog,
B, was chosen to point to the equator with an angle determined by the
pump phase. Hence, the two eigenstates in the direction of B are super-
position states, while the original state jψi can be projected onto each of
them by employing the proposed SG effect.
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vectors have been well established [16,17]. Collinear SFG inter-
actions, together with the dichroic beam splitter, therefore con-
stitute the currently known possible manipulations that can be
performed on a two-frequency state: state rotation (analogous to
a spectral wave plate), and a projection along the z axis of the
Bloch sphere (analogous to a spectral filter), on which lie the pair
of pure frequency states jωii and jωsi. It is therefore interesting to
ask whether a projection on the Bloch sphere equator, hosting the
frequency superposition states, is also possible within a single SFG
interaction.

Recently, we have studied [11] the all-optical SG effect, in
which a classical idler beam (ω1 � ωi) enters into a nonlinear
crystal with a transverse gradient in the magnitude of B. This
can be achieved in a quasi-phase-matched (QPM) interaction
by varying the duty cycle of the periodic poling in the transverse
direction, as illustrated in Fig. 2(e) [18]. When such a nonlinear
crystal is pumped by a collinear pump wave (ω12 � ωp), the in-
cident idler beam is deflected into two composite classical states of
the signal (ω2 � ωs) and idler frequencies, at positive and neg-
ative deflection angles with respect to the optical axis. This is an
analog of the SG experiment [19], where a beam of silver atoms
carrying an internal spin-1/2 was deflected into two discrete
angles by a magnetic field gradient.

The all-optical SG effect is more than an aesthetic analogy be-
tween classical wave propagation and quantummechanics. Recently,
it has been proven that universal quantum computation schemes can
be based on the χ�2� interaction [20], where single-qubit gates can be
readily realized in the undepleted-pump regime. In this context,
a quantum version of the all-optical SG effect greatly simplifies

experimental realizations of frequency-domain quantum state pro-
jection on the Bloch-sphere equator [Fig. 2(b)], as it requires only
a single nonlinear crystal. It is therefore evident that the all-optical
SG effect [11] merits a quantum formulation.

The analytical solution for the quantum case can be obtained in
the following manner. In order to solve Eq. (4) for a linear gradient
of the nonlinear coupling in the y direction B � �B0 � B 0y�B̂,
where B̂ � x̂ cos φ12 � ŷ sin φ12 and B 0 ∝ κ12∕W [W being
the poled region width as in Fig. 2(e)], it is most convenient to
transform the spinor Φ to the transverse momentum space.
This is a Fourier transformation over the transverse coordinates
rT � �x, y�, given by Φ̃�kT , z� �

R
d2rTΦ exp�ikT · rT �. The

transformed field Φ̃ also happens to represent the far-field operator.
In the limit of negligible spatial walk-off, the matrix M is replaced
by a scalar m ∼ k̄ (where k̄ represents a mean wavenumber),
and Eq. (4) is diagonalized to the basis of the B̂ direction.
Consequently, there exist two eigenfields Φ̃� corresponding to
the eigenvectors of Σ · B̂, which propagate according to their re-
spective eigenvalue:

i
∂
∂z

Φ̃� �
�
−
k2
T

2k̄
	

�
B0 − iB 0 ∂

∂ky

��
Φ̃�: (5)

The solution of Eq. (5) is given in terms of propagation operators
exp�−iH�z� acting on each eigenfield Φ̃� separately:

exp�−iH�z� � exp

�
�izB0 − iz3

B 02

6k̄

�

× exp
�
	zB 0 ∂

∂ky

�

× exp
�
−iz

k2
T

2k̄
	 iz2

B 0ky
2k̄

�
: (6)

The first exponential in Eq. (6) is responsible for phase accumu-
lation (both linear and cubic, due to the linear variation of B ). The
third exponential is the paraxial diffraction with a self-acceleration
phase accumulation, also found in Airy beams [21]. The essential
property of these operators, however, is the SG deflection part,
given by the second exponential:

D�α� � exp

�
−αk̄Σ · B̂

∂
∂ky

�
, (7)

where in Eq. (7) we have rewritten it in the most general (non-
diagonalized) form, so the Σ · B̂ term appears inside. The action
of this operator results in a deflection of different eigenfields
Φ̃� by opposite angles, according to the corresponding eigenvalues.
The far-field deflection angle for a screen situated outside the non-
linear crystal is given as α � nB 0L∕k̄, where n is the refractive index
of the medium, and L the distance traveled inside it. The deflection
is governed by the gradient of the nonlinear coupling along
y, B 0 ∝ κ12∕W .

This SG effect for two-frequency photonic states is a simple
manifestation of quantum correlations between the spatial degrees
of freedom and the spectral (internal) ones. We proceed by writ-
ing the output field Φ̃out in terms of the original input field Φ̃in �
�ϕ̃i, ϕ̃s�T and the unitary transformation U that diagonalizes
Σ · B̂, i.e., Σ · B̂ � U−1σzU [where σz � diag�1, − 1� is the third
Pauli matrix]. The general expression for Φ̃out is given by

(a) (b)

(c) (d)

(e)

Fig. 2. (a) Single-photon SG interference and (b) its representation on
the Bloch sphere. A single-photon wavepacket state in the idler frequency
jψ ii is incident on a pumped nonlinear SG crystal and transformed into
two spatially separated orthogonal frequency superposition single-photon
states. (c) Two-photon SG-HOM interference and (d) its representation
on the Bloch sphere. Two distinguishable photon wavepacket states are
incident on the crystal, and are deflected into a frequency superposition
2002 state, where jψ�i � �jψ ii � jψ si�∕

ffiffiffi
2

p
. (e) The nonlinearity gra-

dient can be realized by transversely varying the QPM poling duty cycle,
D; see Ref. [18].
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Φ̃out � U−1 exp

�
−ασz

∂
∂ky

�
UΦ̃in: (8)

To further appreciate this relation, we denote the far-field oper-
ators as ϕ̃R and ϕ̃L, the fields deflected to the right and to the left,
respectively. This gives us an effective spectral-to-spatial beam
splitter relation between the input and output fields:�

ϕ̃R
ϕ̃L

�
� 1ffiffi

2
p

�
1 eiφ12

e−iφ12 −1

��
ϕ̃i
ϕ̃s

�
, (9)

where the explicit expression for U was used in Eq. (9). It is worth-
while to consider here the analogy to polarization. The relation
above is very similar to a polarizing beam splitter (PBS), where
the polarization direction is controlled by the phase angle φ12.
Indeed, under the undepleted pump approximation employed
in our analysis, the nonlinear interaction between the two frequen-
cies becomes linear, having an SU(2) symmetry, as is the case with
polarization in birefringent media. However, Eq. (9) represents a
frequency-superposition beam splitter that projects a quantum state
from a single spatial input port onto orthogonal frequency eigen-
states emerging from two output ports.

For simplicity’s sake we consider as a test case B̂ � x̂, i.e., the
phase between the pump wave and the nonlinear modulation pat-
tern is φ12 � 0. (This is an arbitrary choice, whereas a different
selection, such as φ12 � π∕2, would have resulted in the projec-
tion of the state along the ŷ basis instead [see Fig. 1(c)]. In a prac-
tical experiment, two orthogonal transverse bases such as x̂, ŷ can
always be chosen by varying the pump phase by π∕2.) An incident
one-photon state in the idler frequency with a spatial envelope
ψ�r�, written as jψ ini � jψ ii � jψ�r�i ⊗ jωii, is then deflected
into the output state:

jψouti �
1ffiffiffi
2

p
��jψ ii � jψ siffiffiffi

2
p

�
R
�

�jψ ii − jψ siffiffiffi
2

p
�

L

�
, (10)

where jψ si is a state with the same envelope as jψ ii, but in the
signal frequency. A single idler photon, hence, is projected onto
an equal and coherent superposition of spatially separated,
orthogonal two-frequency states [see Figs. 2(a) and 2(b)]. This
projection is unique since the relevant basis lies on the equator
of the Bloch sphere.

As a proof of concept, we simulate the propagation of the
photodetection amplitude ψ j�r� � h0jϕj�r�jψ ini (j � i, s) and
the resulting photodetection probability density G�1��r� (see
Appendix A for details) under realistic experimental conditions.
The idler, signal, and pump free-space wavelengths were chosen
to be λi � 532 nm, λs � 452 nm, and λp � 3000 nm, respec-
tively. For the nonlinear medium, we chose periodically poled
lithium niobate (PPLN) with d 33 � 27 pm∕V and QPM period
of 6.98 μm (larger periods can be used if the idler wavelength is in
the near-infrared). The poled region was designed to induce a
transverse gradient in the nonlinear coupling as in Fig. 2(e)
(see Ref. [18] and, for further details, Ref. [11]), with a width
of W � 400 μm and length along the propagation axis of L �
35 mm. The pump peak power was Pp � 1MW with a waist of
1 mm, giving a peak intensity of roughly I p ≃ 64 MW∕cm2.
The simulated input states in the idler and signal frequencies
were all Gaussian with a 50 μmwaist. Figure 3 presents the propa-
gation and far-field deflection of G�1��r� for the different input
states. The results agree well with the analytic predictions: pure
eigenstates are deflected either to the left or to the right, whereas

an idler frequency input is deflected into both angles, since it
comprises a superposition of the two eigenstates.

An actual experimental design is expected to be sensitive to the
quality and magnitude of the nonlinear coupling gradient. Two
significant design considerations are worth mentioning. (i) Phase
matching. As stated before, a phase mismatch Δk ≠ 0 between
the wavevectors of the interacting photons introduces a z com-
ponent Bz ∝ Δk to the effective coupling field B, thus decreasing
the magnitude of the transverse (x, y) gradient in jBj. (ii)
Nonlinear coupling strength. Stronger nonlinearities and pumps
result in larger deflection angles; therefore, it is favorable to use
crystals with a relatively high nonlinear coefficient, with PPLN
being a good example. For crystals with lower nonlinearity, the
design should be compensated, for example, by increasing the
pump intensity. Moreover, we note that the duty-cycle-based gra-
dient scheme [Fig. 2(e)] is easier to realize in PPLN than in
PPKTP, as the strong anisotropy of the latter crystal tends to align
the ferroelectric domain boundaries along the crystal’s y axis.

More interesting phenomena involve two-photon interference.
We consider an incident state at two different frequencies,
jψ ini � jψ iψ si. The corresponding output state is

jψouti �
1ffiffiffi
2

p
��jψ ii � jψ siffiffiffi

2
p

�
2

R
−

�jψ ii − jψ siffiffiffi
2

p
�

2

L

�
, (11)

where the notation �jψi�2 ≡ jψi ⊗ jψi denotes two photons in
an identical state. The state jψouti demonstrates paraxial photon
bunching: the two photons can only be detected simultaneously
in either the left or right part of the spatial mode [see Fig. 2(c)].
Such a state is inherently entangled, and is the simplest example of
a NOON state withN � 2 for frequency-superposition photons.
Further, it is a new manifestation of the only recently observed
frequency-domain HOM effect, demonstrated with collinear
SFG and a dichroic beam splitter [2], in four-wave mixing [3],
and by using the electro-optic effect together with linear optics

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Simulated photodetection probability in PPLN with a SG po-
ling pattern [with units mm−1 on the left figures and mm−2 on the right
ones, normalized so that the total probability, by integrating over y (left)
or xy (right), is 1]. Propagation along the z axis is presented to the left,
while the far-field pattern is given to the right. All input states are
Gaussian with a waist of 50 μm. (a), (b) The input state is jψ ini �
jψ ii and is deflected into two discrete angles. (c), (d) The input state
is an eigenstate jψ ini � �jψ ii − jψ si�∕

ffiffiffi
2

p
, and is deflected only to

the left. (e), (f ) For the second eigenstate, jψ ini � �jψ ii � jψ si�∕
ffiffiffi
2

p
,

the deflection is only to the right.

Research Article Vol. 5, No. 10 / October 2018 / Optica 1300



[9]. An interesting observation is that this effect occurs only when
the two photons are distinguishable, as opposed to the original
HOM effect, which requires indistinguishable photons. Unlike
Refs. [2,3,9], here the entire effect occurs in the nonlinear crystal,
saving the need for additional optical elements. Moreover, the re-
sulting projection of the quantum state in these works was limited
to the Bloch sphere poles (jωii and jωsi), as opposed to the
frequency-superposition scheme presented here.

3. QUTRIT CASE

Next, we discuss the nontrivial case of paraxial photonic qutrits.
The internal degree of freedom is now three dimensional, in con-
trast to the well-known two-state polarization subspace for light.
Our analysis for qubits can be easily generalized by inserting a
second interaction term between frequencies ωi and ωj and with
coupling κij into Eq. (2):

H SFG �
Z

d3r
X

j�1, 2, 3

ℏvgjϕ
†
j

�
−i

∂
∂z

−
∇2

T

2kj

�
ϕj

−

Z
d3rℏ

X
�jk�

κjk�ieiφjkϕ†
j ϕk − ie−iφjkϕjϕ

†
k�: (12)

This is made possible in specially engineered structures called
nonlinear photonic quasi-crystals (NLPQCs) [22,23], where now
the χ�2� nonlinearity is quasi-periodically modulated along the
propagation direction with several fundamental lattice constants
2π∕Λl , l � 1, 2,… Each Λl is chosen to satisfy phase matching
for the interaction of ωi, ωj and the corresponding pump
ωij � ωj − ωi. This arrangement allows for two (or more) differ-
ent nonlinear processes to occur simultaneously.

The dynamics of paraxial qutrits is still given by Eq. (4), with
Φ � �ϕ1,ϕ2,ϕ3�T and the necessary adjustments for Σ and B, to
be discussed shortly. However, there is still freedom in the choice
of coupling. The three possible choices are the Λ scheme, the V
scheme, and the ladder scheme [see Figs. 4(a)–4(c)]. The operator
Σ is again a three-component vector, this time of 3 × 3Hermitian
matrices Σjk � iLjk [with �jk� � �12�, �23� or �31�], where Ljk
are anti-Hermitian and given by

�Ljk�mn � eiφjkδjmδkn − e
−iφjkδjnδkm: (13)

The matrices Ljk form a closed Lie algebra �Ljk, Lpq� �
Ljqδpk � Lpjδkq � Lqkδjp � Lkpδqj, conditioned that the coupling
phases satisfy φjk � φkl � φjl for all j, k, l (hence, only two out of
three couplings can be present simultaneously). Up to the phase
factors, the Ljk are identical with the generators of the three-
dimensional rotation group SO(3). Namely, we can associate
the components of the orbital angular momentum operator,
Lx , Ly, and Lz , with the set of matrices L23, L31, and L12, respec-
tively. Similar to the qubit case, an analog of a dipole moment
μ � Σ is associated with the internal angular momentum degree
of freedom. The three corresponding components of the magnetic
field equivalent B are now simply given by Bjk � κjk∕v̄g.

When a transverse coupling gradient is present, we expect that
a SG effect [Eqs. (7)–(9)] is manifested in this case, as well. For
example, if one chooses to work with the Λ scheme [Fig. 4(a)],
the nonvanishing components of the coupling field B are
Bx � κ23∕v̄g and By � κ31∕v̄g . We again have B̂ �
x̂ cos θ� ŷ sin θ, where this time tan θ � κ31∕κ23. Each input
photon is now projected on the three eigenstates of Σ · B̂ and,
subsequently, either deflected to distinct angles on the right (R)
or on the left (L), or remains undeflected in the middle (M).
Consequently, Eq. (9) becomes0

@ ϕ̃R
ϕ̃M
ϕ̃L

1
A�

0
B@

− eiφ21 sin θffiffi
2

p cos θffiffi
2

p ieiφ23ffiffi
2

p

ieiφ31 cos θ ieiφ32 sin θ 0
− eiφ21 sin θffiffi

2
p cos θffiffi

2
p − ieiφ23ffiffi

2
p

1
CA
0
@ ϕ̃1

ϕ̃2

ϕ̃3

1
A, (14)

and one should replace σz in Eq. (8) with Sz � diag�1, 0, − 1�.
Moreover, as in the previous two-level case, the deflection angles
can be all optically controlled by the intensity of the pumps. For
example, consider an input state jψ ini � jψ1i (the ket jψ ji �
jψ�r�i ⊗ jωji represents a photon in the jth frequency state
and with some spatial envelope ψ�r�). For simplicity, we factor
out all imaginary coefficients in Eq. (14) by setting φ23 �
φ31 � −π∕2, where it follows that φ21 � −π. Another simplifi-
cation is to take θ � π∕4, i.e., κ23 � κ31. The output state is then
given by

jψouti �
1

2
jψ�iR �

1ffiffiffi
2

p jψ0iM � 1

2
jψ−iL, (15)

where

jψ�i�
jψ1i� jψ2i�

ffiffiffi
2

p jψ3i
2

, jψ0i�
jψ1i− jψ2iffiffiffi

2
p (16)

are the corresponding qutrit eigenstates with eigenvalues �1 and
0. The illustration of this deflection is given in Fig. 4(d). It is
interesting to note that jψ3i appears either on the left port or
the right port, but it never appears on the undeflected middle
port. As with the qubit case, the simulations in PPLN are repeated
for Λ qutrits of wavelengths λ1 � 532 nm, λ2 � 584 nm, and
λ3 � 452 nm, and with pump wavelengths λ13 � 3000 nm
and λ23 � 2000 nm. The nonlinear crystal dimensions and
pump intensities are as before, with the exception that now
the QPM pattern is aperiodic, as explained previously. The sim-
ulation results presented in Fig. 5 agree well with the analytic
derivation. Slight asymmetries can be explained due to the finite
aperture of the pump beam, deforming the transverse gradient in
the nonlinear coupling. The analysis of the V and ladder schemes
[Figs. 4(b) and 4(c)] results in identical behavior [Eq. (15) and

Fig. 4. Three possible configurations for frequency-domain photonic
qutrits: (a) Λ scheme, (b) V scheme, and (c) nearest-level (ladder)
scheme. (d) Illustration of the SG deflection for a singleΛ scheme photon
in the lowest frequency jψ ini � jψ1i. The expressions for the eigenstates
jψ�i and jψ0i are given in Eq. (16).
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Fig. 5], with the deflected eigenstates given by the cyclic permu-
tation �1, 2, 3� → �2, 3, 1� → �3, 1, 2� on the input frequencies
for the Λ, V , and ladder schemes, respectively.

Two-photon bunching can also be manifested in the qutrit
case. For two Λ scheme photons in the initial pure state
jψ ini � jψ1ψ2i, the output state is written as

jψouti �
1

2
ffiffiffi
2

p jψ�ψ�iR −
1ffiffiffi
2

p jψ0ψ0iM � 1

2
ffiffiffi
2

p jψ−ψ−iL

� 1

2
jψ�iRjψ−iL, (17)

which is clearly a two-qutrit path-entangled state, demonstrating
photon bunching (with the exception of the jψ�ψ−i ket). Note
that the jψ0i photons are always bunched in the middle output
port. As with the qubit case, this spatial separation of orthogonal
eigenstates might prove beneficial to quantum information
processing using frequency domain qutrits [24–26].

4. CONCLUSIONS

In summary, we have shown that paraxial photons propagating in
specially engineered nonlinear media exhibit the properties of 2D
quantum particles with internal angular momentum of poten-
tially arbitrary dimension. The couplings between the discrete
set of frequencies that satisfy phase-matching constitute the

analog of an external magnetic field with which the photons in-
teract. When the coupling varies in space, quantum correlations
appear between the spatial and spectral degrees of freedom. For
the simpler cases of qubits and qutrits, we investigate the equiv-
alent of an all-optical SG effect for photons, which allows the
projection and spatial separation of orthogonal frequency-
superposition states. Such an effect is also expected to produce,
for example, two-photon entanglement in the frequency domain
that resembles the familiar HOM 2002 state [2]. The possible
applications for the proposed effect include frequency-basis quan-
tum computing [20]; color-entanglement generation [27] for
quantum information and communication protocols, without the
necessity to use multiple spatial modes [25] or biphotons [26] for
the case of qutrits; two-mode quantum state tomography [28];
and quantum key-distribution protocols, which have been proven
to be more secure when using qutrits [24]. The SG deflector,
comprising a single optical element, can be used in these schemes
as a spectral-to-spatial beam splitter (or tritter), being all-optically
controlled, as opposed to electronically controlled realizations
[6,8,10]. Moreover, the resulting states in SG projection are ex-
pected to be robust against fluctuations in the pump pulse area
(the latter will alter only the deflection angle), as compared to
previous setups that used nonlinear state rotations [2,4].

The concept presented here can be further extended to higher
dimensions, using nonlinear photonic crystals that will couple
an arbitrary number of optical waves at different frequencies.
Moreover, depending on the chosen element of the nonlinear ten-
sor, the interacting modes may have either the same polarization
or different polarizations. These generalizations can be done with
efficient scalability, as the effect still requires only a single optical
element, in contrast to what previous χ�2� realizations [2,20] can
offer. Since frequency-domain qudits are recently gaining atten-
tion as possible candidates for carrying quantum information
[2–10,20], we are hopeful that this work will help promote such
future advancements.

APPENDIX A

The first-order equal-time equal-position correlation function is gen-
erally given by G�1��r, t; r, t� � P

jkhψ jE �−�
j �r, t�E ���

k �r, t�jψi,
where jk sum over all interacting frequencies. In experiments, the
finite integration time of the detection system is much longer than
the optical cycle, thus the field products E �−�

j E ���
k with different car-

rier frequencies (j ≠ k) are averaged out. The only contribution now
comes from the diagonal terms [see Eq. (1)]

G�1��r, t; r, t� � ℏv̄g
2ϵ0nc

X
j
hψ jϕ†

j �r, t�ϕj�r, t�jψi,

where the prefactor arises from the field quantization in a dielec-
tric medium [13]. Now let jψi be a single-photon paraxial wave-
packet state jψi � P

q, jcq,jj1kj�qi. The SU(2) [or SO(3)]
symmetry of our dynamics does not mix ϕ† with ϕ, and therefore
we can safely argue that hψ jϕ†

j ϕjjψi �
P

nhψ jϕ†
j jnihnjϕjjψi �

hψ jϕ†
j j0ih0jϕjjψi. Denoting ψ j � h0jϕjjψi, and multiplying

Eq. (4) with h0j on the left and jψi on the right yields the
equation

i
∂
∂z

Ψ �
�
1

2
M−1p2 − Σ · B�r�

�
Ψ,

(a) (b)

(c) (d)

(e) (f)

(g)

(i)

(h)

(j)

Fig. 5. Simulated photodetection probability in PPLN with a quasi-
periodic SG poling pattern (with units mm−1 on the left figures and
mm−2 on the right ones, normalized as in Fig. 3). All input states are
Gaussian with a waist of 50 μm. (a), (b) The input state is the first
eigenstate jψ ini � jψ�i and is deflected to the right. (c), (d) The second
eigenstate jψ ini � jψ0i remains undeflected. (e), (f ) The third eigen-
state, jψ ini � jψ−i, is deflected to the left. In (g), (h), the state jψ ini �
jψ3i is projected onto the eigenstates jψ�i and jψ−i [see Eq. (16)]. The
resulting deflection is only to the right or to the left. Finally, (i), (j) show
the projection of jψ ini � jψ1i onto all three eigenstates. The resulting far
field consists of all three possible deflections.
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where Ψ � �ψ1,…,ψN � (N � 2, 3 in this paper) is a c-number
vector. From here the correlation function is readily found:

G�1��r, t; r, t� � ℏv̄g
2ϵ0nc

X
j

jψ jj2�r, t� �
ℏv̄g
2ϵ0nc

Ψ†Ψ�r, t�:
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