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Two-dimensional nonlinear beam shaping
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We develop a technique for two-dimensional arbitrary wavefront shaping in quadratic nonlinear crystals by using
binary nonlinear computer generated holograms. The method is based on transverse illumination of a binary modu-
lated nonlinear photonic crystal, where the phase matching is partially satisfied through the nonlinear
Raman—Nath process. We demonstrate the method experimentally showing a conversion of a fundamental
Gaussian beam pump light into three Hermite—Gaussian and three Laguerre—Gaussian beams in the second harmo-
nic. Two-dimensional binary nonlinear computer generated holograms open wide possibilities in the field of non-

linear beam shaping and mode conversion.
OCIS codes: 190.2620, 090.2890.

Shaping a generated wavefront in nonlinear conversion
adds functionality and opens exciting new possibilities
such as all-optical self-routing and self-shaping of beams
[1,2]. The alternative approach of shaping a beam in the
fundamental frequency (FF) and then trying to frequency
convert it usually does not work, except for some very
simple cases [3], due to the difficulty of maintaining the
phase-matching requirements with non-Gaussian beams.
Only one-dimensional (1D) beam shaping in quadratic
nonlinear crystals was ever experimentally demon-
strated. Shaping the amplitude of the generated beam
was suggested by means of varying the interaction length
[4]. Shaping the phase was achieved by introducing a
transverse-dependent phase term in a periodic structure
[1,5] or in a nonlinear structure that generated multiple
focal points at the converted frequency [6]. Shaping was
also demonstrated in nonlinear wave mixing with non-
Gaussian inputs [7]. In addition, it has been recently de-
monstrated that 1D arbitrary beam shaping is possible
when introducing the concept of a continuous computer
generated hologram (CGH) into the nonlinear optical re-
gime [8]. Only 1D beam shaping was addressed due to the
limitations of the fabrication technique of quadratic non-
linear crystals. The main method for modulating the non-
linear coefficient, electric field poling in ferroelectric
crystals [9], is a planar method that enables use of only
two of the three available axes of the nonlinear crystal.

A common method for two-dimensional (2D) beam
shaping in linear optics is based on using CGH [10]. When
alight beam is sent through a CGH, the far-field diffracted
wavefront has the desired amplitude and phase. There are
several ways of implementing the coding of information in
a CGH—for example, encoding in a continuous [11] or a
binary [12] form. Introducing a 1D continuous CGH into
the nonlinear regime [8] was based on periodically mod-
ulating the propagation axis (the crystal’s x axis) to enable
quasi-phase matching, and only one additional axis (the
crystal’s y axis) was available for realization of the non-
linear holographic pattern. Due to the use of the two avail-
able axes in the crystal, it is impossible to achieve 2D
beam shaping using this scheme.

In this Letter, we demonstrate for the first time, to our
knowledge, arbitrary 2D beam shaping in binary non-
linear CGH. When a fundamental light beam passes
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through the crystal, a wavefront with the chosen ampli-
tude and phase is obtained in the second harmonic (SH).
This is achieved by combining a transverse setting of the
crystal [13] with encoding of a 2D binary pattern. Unlike
the 1D nonlinear CGH [8], here the crystal is set in a
transverse setting [13]—i.e., the beam propagates along
the crystal’s z axis, and the two orthogonal axes are used
for realizing the nonlinear holographic pattern. In addi-
tion, the FF is y polarized and not z polarized, as in the
1D scheme. Since both transverse axes are needed for
beam shaping, how is it possible to maintain the phase-
matching requirements? The solution we propose to this
problem is to use the nonlinear Raman—Nath process
[14], where only the transverse part of the vectorial
phase-matching condition is fulfilled. In this configura-
tion, we cannot use a coding function that relies on con-
tinuous modulation of the amplitude and phase, as is
done in [8], since the only possibilities we have are either
an entirely positive or an entirely negative quadratic
susceptibility throughout the interaction region. Fortu-
nately, such a case of binary modulation was already
addressed by Lee [12], in the field of linear CGH. Lee
suggested the following binary coding method for the
amplitude transmittance function of a CGH:

_ |1 cos2af camier® — (2, y)] - cos[zq(x,y)] 2 0,
Ux.y) = {0 otherwise,

ey

where q(x,y) is a function of the amplitude of the
encoded information, defined by sin [z *q(x,y)] =
A(x,y). A(xr,y) and ¢(x,y) are the amplitude and the
phase, respectively, of the Fourier transform (FT) of
the desired wavefront in the first diffraction order.
A(x,y) is normalized to the range 0-1, ¢(x,y) is in the
range 0-2z, and q(x,y) is in the range 0-0.5; famicr 1S
the frequency of the carrier function. We can implement
this function to realize a 2D nonlinear CGH. The 2D mod-
ulation of the second order nonlinearity coefficient of a
crystal in this case is

dnro (X, y) = dij sign{cos[2af camier® — @ (2, Y)]
- cos[zq(x, )]}, 2
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where d;; is an element of the quadratic susceptibility y®
tensor. Without the amplitude and phase modulation that
are required for beam shaping, the nonlinear coefficient of
the structure is periodically modulated with an angular
frequency 27f . mier- In this case, the nonlinear Raman—
Nath process generates a SH beam at an angle Oy =
arcsin(2xf cqmier /K2,,), Which is equivalent to the angle of
the first diffraction order for a regular grating with the
same angular frequency [14]; this is schematically illu-
strated in Fig. 1(a). When the amplitude and phase mod-
ulation are added, the far-field SH beam profile at this first
diffraction order is the FT of A(x,y)explig(x,y)]. It
should be noted that the nonlinear Raman—Nath process
does not provide full matching of the wave vectors, since
the longitudinal part of the vectorial phase-matching
condition is not fulfilled. We will discuss other phase-
matching options in the last part of this Letter.

To demonstrate the concept of encoding a 2D CGH in
nonlinear crystals we chose to fabricate a crystal aimed
to generate three modes from the Hermite-Gaussian
(HG) family [15], HG;;, HG;3, and HGy;, and three modes
from the Laguerre-Gaussian (LG) family [15], LGy, LGqg,
and LGqy, in the first diffraction order. The transverse
spatial distribution of HG modes at origin is

2
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where A;,, is the amplitude, W) is the waist, and G,(u) is
the lth-order HG function. The transverse spatial distribu-
tion of LG modes at origin is
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where C,;, is the amplitude, Lﬁ, (u) is a generalized
Laguerre polynomial, and [ is the topological charge of
the beam. Since the FT of an HG mode and an LG mode
is the same mode, the modulation of the nonlinearity
coefficient was calculated according to Egs. (3) and (4).

A schematic illustration of the proposed experimental
setup is shown in Figs. 1(b) and 1(c), with simulations of
the far-field images for one mode of each family, HG;
and LGq;. Numerical simulations were performed based
on the split-step Fourier method. In addition, the illustra-
tion shows the poling pattern of the crystal computed for
each of the two modes and the transverse setting in
which the experiment took place.
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Fig. 1. (Color online) A Raman—Nath process in a periodically
poled crystal (a) and the 2D binary nonlinear CGH setup and
far-field results for HG;; (b) and LGy; (c).
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We fabricated the suggested structure by 2D electric
field poling of a stoichiometric lithium tantalate (SLT)
nonlinear crystal. The crystal had six separate 0.5 x
0.5 mm? structures, with different modulations of the sec-
ond order nonlinearity coefficient, according to Eq. (2).
Figure 2 presents a comparison between the calculated
and the fabricated poling patterns for three of the struc-
tures. The microscope pictures are of one of the surfaces
of the crystal after selective etching, and the good quality
of the poling process can be observed. The thickness of
the crystal was about 0.5 mm. The FF source used was
a Nd:YAG laser producing 4.4 ns pulses at a 10 kHz
repetition rate at a wavelength of 1064.5 nm. An ordinary
polarized laser beam was focused to the center of the crys-
tal, creating a waist radius of approximately 350 ym and an
0-00 second harmonic generation was measured.

The desired HG modes were obtained at the first (left
and right, +1 and -1) diffraction order. The frequency of
modulation in the x direction, f.amier, Was chosen to be
0.035 ym™!, hence the first diffraction order is obtained
at an external angle of Agyf camier ~ 18.6 mrad, where Agy
is the SH wavelength. Figure 3 presents a comparison
between the theoretical and the measured profiles in
the first diffraction order; spatial correlation between
the measured and theoretical beam profiles is presented
in Table 1. The simulated spatial correlation for all the
beams in this Letter was higher than 0.95.

The desired LG modes were also obtained at the first
diffraction order. The frequency of modulation in the x
direction, f capier, Was chosen in this case to be 0.06 ym™!
the first diffraction order is obtained at an external angle
of Asuf carrier ~ 31.9 mrad. Figure 4 presents a comparison
between the theoretical and the measured profiles in the
first diffraction order, and the spatial correlation is pre-
sented in Table 1.

The LG;; mode is a vortex beam [16], carrying a topo-
logical charge of [ = +1. The result shows that 2D non-
linear CGH is a method in which orbital angular
momentum can be added through the nonlinear process,
so that a nonvortex fundamental beam can be converted
to a SH vortex beam. This type of conversion was theo-
retically discussed in [17] and recently experimentally
demonstrated in spiral-shaped and fork-shaped nonlinear
photonic crystals in [18]. In the latter crystals, only the
generation of vortex beams is possible, whereas in this

HGy, HG,, LGy,

(a)

—100pum

m— 100pm

—100pm

Fig. 2. A comparison between calculated (a) and fabricated
(b) poling patterns in the HG;;, HG;5 and LGy; structures.
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Fig. 3. (Color online) A comparison between theoretical
(a), and measured (b) HG beam profiles at the first diffraction
order.

Letter we present a general technique for generating
arbitrary wavefronts.

We examined both the total SH generation and
the power of the first diffraction order. The predicted
external conversion efficiency, calculated for peak
power, is 6.74 x 10712% W-!, and the measured one is
11.2 x 10712% W-1. A different fraction of the total SH
power is diffracted to the first diffraction order in each
structure; a comparison between the predicted and mea-
sured values is presented in Table 1. The fair agreement
between the values indicates that the quality of modula-
tion provided by the electric field poling technique is
sufficient for realization of 2D nonlinear CGHs.

Two-dimensional binary nonlinear CGHs can be used to
generate arbitrary shapes of beams and are not limited
to only HG and LG beams. For example, they can be used
to generate accelerating Airy beams [19,1], parabolic
beams [20]. The limitation of the suggested scheme is
that the full vectorial phase-matching condition is not ful-
filled and hence the resulting conversion efficiency is
quite small. An improvement of the efficiency can be ac-
hieved by working with the Cerenkov [21] phase-matching
scheme, where only the longitudinal part of the vectorial
phase-matching condition is fulfilled, or the Bragg [14]
phase-matching scheme where the full vectorial condition
is fulfilled. In these cases the required frequency of mod-
ulation, f .,mier, Will be larger in comparison to the values
mentioned here, which will require submicron patterning
of the nonlinear crystal [22]. In the Bragg scheme, for our
pump wavelength of 1064.5 nm, the required period is
0.98 um. Conversion efficiency depends on the encoded
information, e.g., for an Airy beam [19] in a 0.5 mm thick
crystal, it is expected to be 7.7 x 10 1% W-1.

In conclusion, we have introduced a method for non-
linear 2D beam shaping, based on the concept of binary
computer generated holograms. We experimentally

Table 1. Beam Profile Correlation and a Comparison
between Predicted and Measured Percentage of SH in
the First Diffraction Order

Percentage of SH

Mode  Spatial Correlation  Prediction = Measurement
HG; 0.89 11.8% 8.1%
HG, 0.9 9.12% 8.3%
HGy; 0.92 9.37% 9.5%
LGy, 0.81 27.7% 18.39%
LGge 0.87 23.03% 20.57%
LG 0.92 26.9% 18.84%

LGy, LGy, LG;,

Fig. 4. (Color online) A comparison between theoretical
(a), and measured (b) LG beam profiles at the first diffraction
order.
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demonstrated the method by converting a fundamental
Gaussian beam pump light into three HG and LG beams
at the second harmonic. Furthermore, nonlinear optical
beam shaping can be employed for any desired wave-
front and provides full control of the amplitude and
phase of the converted beam. The ability to convert
the frequency of light and to reshape its wavefront in
any desired way is useful for all-optical shaping, routing,
and switching of beams.

This work was supported by the Israel Science
Foundation, grant no. 774/09 and the Israeli Ministry of
Science and Technology. The authors thank Soreq
NRC for the assistance with the poling of the crystal.

References

1. T. Ellenbogen, N. Voloch-Bloch, A. Gannay-Padowicz, and
A. Arie, Nature Photon. 3, 395 (2009).

2. L. Dolev, T. Ellenbogen, and A. Arie, Opt. Lett. 35, 1581
(2010).

3. L. Dolev and A. Arie, Appl. Phys. Lett. 97, 171102 (2010).

4. G. Imeshev, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 673
(1998).

5. J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M.
Fejer, IEEE. J. Sel. Top. Quantum Electron. 8, 660 (2002).

6. Y. Qin, C. Zhang, Y. Zhu, X. Hu, and G. Zhao, Phys. Rev. Lett.
100, 063902 (2008).

7. T. Ellenbogen, I Dolev, and A. Arie, Opt. Lett. 33, 1207
(2008).

8. A. Shapira, I. Juwiler, and A. Arie, Opt. Lett. 36, 3015 (2011).

9. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl.
Phys. Lett. 62, 435 (1993).

10. B. R. Brown and A. W. Lohmann, Appl. Opt. 5, 967 (1996).

11. J. J. Burch, IEEE Proc. 55, 599 (1967).

12. W. H. Lee, Appl. Opt. 18, 3661 (1979).

13. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).

14. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang,
and Y. S. Kivshar, Opt. Lett. 34, 848 (2009).

15. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics
(Wiley, 1991), Chap. 3.

16. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Phys. Rev. A 45, 8185 (1992).

17. A. Bahabad and A. Arie, Opt. Express 15, 17619 (2007).

18. N. Voloch-Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler,
and A. Arie, “Twisting of light by nonlinear photonic crys-
tals,” Phys. Rev. Lett. (to be published).

19. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N.
Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).

20. M. A. Bandres, Opt. Lett. 33, 1678 (2008).

21. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W.
Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, IEEE. J.
Quantum Electron. 45, 1465 (2009).

22. C. Canalias and V. Pasiskevicius, Nat. Photon. 1, 459 (2007).



