
  

Annular symmetry nonlinear frequency 
converters 

Dror Kasimov, Ady Arie, Emil Winebrand, Gil Rosenman 
School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel 69978 

Ariel Bruner, Pnina Shaier and David Eger  

Electro-Optics Division, Soreq NRC, Yavne 81800, Israel 

Abstract:  We present a new type of two-dimensional nonlinear structure 
for quasi-phase matching. This structure has continuous rotational 
symmetry, and in contrary to the commonly used periodic structures, is not 
lattice shaped and has no translation symmetry. It is shown that this annular 
symmetry structure possesses interesting phase matching attributes that are 
significantly different than those of periodic structures. In particular, it 
enables simultaneous phase-matched frequency doubling of the same pump 
into several different directions. Moreover, it has extremely wide phase-
mismatch tolerance, since a change in the phase matching conditions does 
not change the second harmonic power, but only changes its propagation 
direction. Several structures were fabricated using either the indirect e-beam 
method in LiNbO3 or the electric field poling method in stoichiometric 
LiTaO3, and their conversion efficiencies, as well as angular and thermal 
dependencies, were characterized by second harmonic generation. 
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Periodic modulation of the second order nonlinear susceptibility, either in one dimension1 
(1D), or in two dimensions2,3,4 (2D) is widely used nowadays for quasi-phase matched (QPM) 
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frequency conversion. These structures are lattice shaped, and have discrete rotational 
symmetry, i.e., efficient frequency conversion is achieved only for specific input and output 
angles. On the other hand, they usually have continuous translation symmetry: translating the 
frequency converters in a direction perpendicular to the input pump wave usually does not 
change the power of the generated waves. We present here a new type of nonlinear structure, 
one that possesses only continuous rotational symmetry and no translation symmetry.  

The structure of interest is a binary annular grating. It is a structure of concentric rings 
alternating between +d and –d, where d is a tensor element of the second order nonlinear 
susceptibility. The normalized, space-dependent part of the nonlinear coefficient can be 
written analytically as a sign function of a radial cosine.  

( ) (cos(2 ))g r sign rπ= Λ                                                   (1) 

where 22 yxr += . To understand its phase matching possibilities, we need to know its 

Fourier transform1. The Fourier transform of an infinite structure with a period of Λ consists 
of concentric impulse rings5 with a period of 2π Λ . Figure 1 shows the structure in real space 
and its Fourier transform. Figure 1(b) also shows an example of the phase matching diagram 
for second harmonic generation (SHG), in the case where the pump passes exactly at the 
center of the structure. One can see that phase matching occurs symmetrically from both sides 
of the pump and that simultaneous phase matching at different orders and angles can occur. 
The different walk-off angles (angles between the fundamental and the second harmonic) at 
which we get phase matching are obtained by the law of cosines: 
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where 2nG n π= ⋅ Λ  , and ωω 2,kk  the wave-vectors of the fundamental and second 

harmonic, respectively. 
 

                 
            (a)          (b)  

Fig. 1.  (a) – The binary annular grating with period Λ . (b) – Fourier transform of the binary 
annular grating and phase matching diagram for SHG. The second harmonic’s k-vector outlines 
a circle around the fundamental’s k-vectors giving all possible phase mismatches. Points of 
intersection between this circle and the structures Fourier space rings are the points of phase 
matching (represented by large grey dots).   

 
A change of the phase matching condition (e.g., by changing the temperature or the 

wavelength) will result in a change of the angles of second harmonic without losing phase 
matching. This is in contrast to 1D or 2D periodic structures where a change of the phase 
matching condition will usually result in a sharp efficiency drop as a result of the loss of phase 
matching. This means that the annular binary structure has a much higher phase mismatch 
tolerance than periodic QPM structures. 
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It should be noted that the phase matching considerations shown in Fig. 1 are true when 
the input beam passes through the center of the structure and for an infinite structure. Other 
conditions change the structure in the Fourier space, although the general considerations 
remain true.   

Annular symmetry structures can be manufactured using similar methods to those that are 
used for making periodic nonlinear structures. We fabricated several binary annular structures 
with various periods using two poling methods – indirect e-beam poling6 in LiNbO3 and 
electric field poling7 in stoichiometirc LiTaO3 (SLT). Two structures were used in second 
harmonic generation experiments: 

 (1) An annular binary structure poled on lithium niobate using the indirect e-beam method 
with a period of 28 μm, having a size of 800x800 microns. 

 (2) An annular binary structure poled on SLT using the electric field poling with a period 
of 7.5 μm and an active size of 8.75x5 mm. The period of 7.5 μm was chosen since it enables 
co-linear QPM SHG of a Nd:YLF laser at 1047.5 μm. 

The first structure was accomplished using the indirect e-beam poling method as follows. 
A 0.5 mm thick z-cut LiNbO3 crystal of congruent composition was used. A Shipley-1818 
photo-resist of 2 μm thickness was spin coated over the crystal C– face.  The electron 
exposure was performed by using a commercial electron beam lithography system (ELPHY 
Plus) adapted to a JEOL JSM 6400 scanning electron microscope. The acceleration voltage 
was selected to be 15kV corresponding with the photo-resist dielectric layer thickness so that 
the majority of incident electrons would stay trapped in the coating layer, therefore inducing 
high electric field that causes the inversion. The adaption of the electron energy and 
photoresist thickness was performed using Monte-Carlo simulations to calculate the effective 
penetration depth of electrons into the layer. The beam current was set to 0.5nA and the 
deposited surface charge density 300 μC/cm2. After exposure the resist layer was removed and 
the crystal was etched for 120 min using hydrofluoric (HF) acid at room temperature to reveal 
the formed domain structures. The duty cycle of this structure was kept at a relatively low 
value, around 10%, in order to reduce Coulomb deflection of the electron-beam, caused by the 
charging of the photo-resist6. 

The second structure was realized in a 0.5 mm thick z- cut SLT crystal, grown by double–
crucible Czochralski8, using our standard electric field poling technique as described 
previously for 1D structures9. First, the annular structured pattern of photoresist was contact 
printed on the C+ face of the wafer from a lithographic mask.  Then, the surface was coated 
by a uniform metallic layer. 

The electrical poling was achieved by applying pulses 0.6 kV to the polar crystal surfaces. 
The total switching charge was 65 μC/cm2. After poling, the photoresist and the metallic 
coatings were removed and the domain structure was revealed by HF etching. Most of the 
structure of the SLT crystal had a duty factor of 70% at the C+ surface and close to 80% at the 
C- surface, while the period length of 7.5 μm was precisely kept along the crystal. The end 
faces of the two crystals were polished for the optical measurements. Fig. 2 shows optical and 
AFM pictures of the surface morphology for the two different crystals. 

To validate the stability and accuracy of the period we preformed far field diffraction on 
the field poled structure using a doubled Nd:YAG laser ( nm532=λ ). The resulting 
diffraction pattern can be seen in Fig. 3. This pattern was highly periodic which indicates a 
stable period. The angle to the first circle of diffraction was rad0705.0≈θ . By using the 

well known law of diffraction ( θλ sinΛ= ) we calculated the period of the structure to be 
mμ55.7=Λ , which agrees well with the design period of mμ5.7 . 
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                               (a)         (b) 

   
    (c)          (d)  

Fig. 2. Optical and AFM pictures of the e-beam poled lithium niobate - (a) and (b) respectively 
and of the electric field poled SLT - (c) and (d) respectively. 

 

 
Fig. 3. Diffraction pattern of the electric field poled structure. 

 
The 28 μm structure was used in two SHG experiments with two different pump sources - 

a 1.0475 μm Q-switched Nd:YLF laser and a PPLN OPO with a pump signal at 1.42 μm . The 
structure with 7.5 μm period was used only in SHG of the Nd:YLF laser. We measured the 
angles of second harmonic and the temperature dependence.  
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Table 1 presents the measured second harmonic angle in the various experiments. For the 
Nd:YLF laser, only high orders (5 & up) are observed with the (relatively large) 28 μm period 
structure. But when moving to longer wavelength or a shorter period, phase-matched SHG 
with lower orders is observed.  The theoretical angles were calculated using Eq. (2). 

Table 1. Angular  measurements in SHG experiments with annular structures 

Measured angle 
(degrees) 

Theoretical angle 
(degrees) Order              Process 

2.5  2.46 5 

4 4.33 6 

6.1 5.9 7 

SHG of Nd:YLF. 
E-beam poled LiNbO3. Λ=28 μm.  

1.065 1.3 2 SHG of an OPO signal. 
E-beam poled LiNbO3. Λ=28 μm. 

0 0 1 
6.9 7 2 
11.5 11.5 3 
16 15.9 4 

SHG of Nd:YLF. 
Electric field poled SLT.  Λ=7.5 μm.  

 
Table 2 shows the various efficiencies in the experiments preformed. These efficiencies 

are compared to the theoretical efficiencies calculated using the Green’s function method, as 
outlined below. For the structure with 7.5 μm period we assumed that the effective interaction 
length is 8.75 mm and the duty cycle is 80%, as derived from the microscope and AFM 
characterization of this sample. 

Table 2. Normalized frequency doubling efficiencies 

Normalized measured 

efficiency ( )% W  

Normalized theoretical 

efficiency ( )% W  
Process 

7.7e-8 1.0e-6 5th order. 28 μm period. 

7.8e-7                                5.2e-6    2nd order. 28 μm period. 

1.5e-1 3.6e-1 1st order. 7.5 μm period.  

1.7e-7 5.5e-7 2nd order. 7.5 μm period 

 
Theoretical efficiencies were calculated using a numerical simulation that solves the 
Helmholtz equation for a second harmonic process10. We used the Green’s function approach, 
which in our case is a simple spherical wave11: ( ) (4 ) ,ikRG R e R R r rπ ′= = − .  The 

second harmonic wave is obtained by convolution of the Green’s function with the source 
distribution – the non linear polarization  

2
2 2 '

2

(2 )
( ) ( ) 2 ( )E r G R d E dr

c
ω ωω= − ⋅∫∫∫

� �

.                             (3) 

where Eω  is the input field (Gaussian beam with mμ80 beam waist), ω  is the angular 
frequency of the input, c is the velocity of light, and d is, as defined earlier, a tensor element 
of the nonlinear susceptibility.  
       This method does not require any upfront assumptions on the direction of propagation of 
the second harmonic wave and is relatively straight-forward and simple. Calculations done 
using the numerical simulation have shown that in co-linear propagation, the efficiency is very 
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similar to that of a regular 1D periodic structure. Non-co-linear propagation on the other hand 
has very low efficiency when compared to periodic structures.   

The effect of phase mismatch was studied by altering the device temperature. Fig. 4 shows 
temperature dependence measured with 7.5 μm structure. Whereas the collinear case shows a 
clear sinc-like behavior, the non collinear 2nd order behaves very differently and is much less 
temperature dependent.  

 
Fig. 4. Temperature dependence of the SHG efficiency in SLT. Solid and dashed lines: 
measurements of the 1st order (collinear) and 2nd order (non-collinear) interactions, respectively. 
Dash-dot line: Calculation of the co-linear 1st  order. Inset: photo of the SHG signal on a screen. 
The central spot is the collinear SHG, whereas the side spots represent the non-collinear SHG   

 
We have presented in this article a new type of nonlinear structure for QPM interactions. 

This structure has continuous rotation symmetry and no translation symmetry, unlike the 
commonly used periodic nonlinear structures that have continuous translation symmetry and 
discrete rotation symmetry. Because of its symmetry properties, the angle of entrance 
(disregarding refraction) does not change its phase matching properties. On the other hand, the 
point of entry to the structure is highly important, and the device will work most efficiently 
when passing exactly through the center of the rings. This is exactly opposite in normal 
lattice-like structures where the angle matters but point of entry does not. Also in annular 
structures several orders and/or processes can be present simultaneously at different angles. 
This does not usually happen in lattice-like structures where a change of angle or temperature 
is needed in order to phase-match at another order. Probably the most significant difference 
between this new structure and previous structures is its behavior with a change of the phase 
mismatch. Such a change will result in a change of the angles of second harmonic, without 
losing phase matching and not in a sharp loss of efficiency as in periodic structures.       

The low dependence of the annular structure on phase mismatch can be useful for easing 
the restrictions on exact period length for specific processes when working non co-linearly. A 
slight change in the period will only result in a slight change of the walk-off angle and not in a 
sharp efficiency change. These structures can therefore be used to measure dispersion 
relations for non-linear crystals. By measuring different angles and orders at various 
wavelengths and temperatures we can deduce the refraction coefficients of the crystal at a 
wide span of conditions12. 
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