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Simulating Correlations of Structured Spontaneously
Down-Converted Photon Pairs

Sivan Trajtenberg-Mills,* Aviv Karnieli, Noa Voloch-Bloch, Eli Megidish,
Hagai S. Eisenberg, and Ady Arie

Introducing structure into photon pair generation via spontaneous parametric
down-conversion (SPDC) is shown to be useful for controlling the output state
and exploiting new degrees of freedom for quantum technologies. This paper
presents a new method for simulating first- and second-order correlations of
the down-converted photons in the presence of structured pump beams and
shaped nonlinear photonic crystals. This method is nonperturbative, and thus
accounts for high-order effects, and can be made very efficient using parallel
computing. Experimental results of photodetection and coincidence rates in
complex spatial configurations are recovered quantitatively by this method.
These include SPDC in 2D nonlinear photonic crystals, as well as with
structured light beams such as Laguerre Gaussian and Hermite Gaussian
beams. This simulation method reveals conservation rules for the
down-converted signal and idler beams that depend on the nonlinear crystal
modulation pattern and the pump shape. This scheme can facilitate the
design of nonlinear crystals and pumping conditions for generating
non-classical light with pre-defined properties.

1. Introduction

The generation of non-classical states of light is ubiqui-
tous in applications of quantum information, such as quan-
tum cryptography,[1] quantum communication,[2] and quantum
computation.[3] One of the leading methods for generating
non-classical light is spontaneous parametric down conversion
(SPDC),[4] a second-order nonlinear optical process in which one
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pump photon from a laser source sponta-
neously converts into two sub-harmonic
photons (also called bi-photons) with
lower energy. The generated photons can
be naturally entangled in many degrees
of freedom, making SPDC useful as a
bright source of entangled photons. The
process is attractive because it is well un-
derstood, easy to implement, and effi-
ciently creates bi-photons in well-defined
spatiotemporal modes.
The introduction of structure into

SPDC was upgraded by the progress
in quasi phase-matching (QPM), based
mainly on electric field poling technol-
ogy of ferroelectric crystals,[5,6] and by
the wide availability of spatial light mod-
ulators (SLMs) for beam shaping. New
and sophisticated crystal configurations
enabled delicate control of the spatial
properties of the spontaneously gener-
ated beams[7] Torres et al.[8] showed how

modulated crystals can shape the generated photons by using a
QPM process in crystals with defects and a curved modulation.
Engineered nonlinear crystals were also studied for on-chip steer-
ing of entangled photons,[9] and periodic 2D crystals were used
to create beam-like path entangled and polarization-entangled
photons.[10–13]

SPDC is not limited to plane-wave-like beams only and was
widely studied with structured pump beams,[14] such as diverg-
ing pump beams,[15–18] Laguerre Gaussian beams[19–21] and Her-
mite Gaussian beams.[22,23] Using structured light in SPDC also
enables the creation of higher dimensional entanglement, for in-
stance by employing the orbital angular momentum (OAM) as
an additional degree of freedom for the photons.[24–28] The twin
photons created in the process have been shown to inherit the
spatial properties of the pump,[15] a property useful for quan-
tum imaging.[29] This trait was also exploited for optimizing the
coupling of the output photons to optical fibers.[30–32] Structur-
ing both the pump light field and the nonlinear crystal further
increases the possibilities for entanglement, and in this con-
text, crystals with a fork-shaped modulation, pumped by vortex
beams, were studied[33,34] as sources for entangled photons carry-
ing OAM.[27]

The spatial distribution of the down-converted photons is of-
ten approximately predicted by wave vector diagram calculations.
Unfortunately, these calculations do not give any information
on the transverse width of the distribution or on higher-order
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effects. Also, they are unsuitable for complex crystals, with spa-
tially varying nonlinearity, or for predicting the effect of simul-
taneous coupling between different modes. Similarly, the em-
ployment of the analytical solution for structured pump beams is
most suitable for modal solutions of the wave equation (such as
Hermite–Gauss[35] or Laguerre–Gauss[36]), but less so for general
wavefronts.[37,38] Numerical solutions of SPDC are very rare, and
were employed so far only for birefringent phase-matching in
homogenous bulk crystals[39,40] and rarely for periodically poled
crystals,[41] but never involving complex crystal structures.
In this paper we present a new simulation method, enabling

to calculate the first-order and second-order correlation func-
tions for the down-converted signal and idler photons. In Sec-
tion 2, we show that the first-order correlation function can be
numerically calculated by solving four coupled wave equations,
using multiple random samples of classical input noise that sim-
ulates the quantum vacuum. We test this formulation by calcu-
lating the first-order correlation function of an SPDC process in
a 2D nonlinear photonic crystal. Second-order correlations are
derived in Section 3, and are then tested in a simple case of de-
generate SPDC in a 1D periodically poled crystal. In Section 4,
we study first- and second-order correlations for more advanced
cases of structured light—decomposed into either the Hermite–
Gauss or the Laguerre–Gauss basis, as well as for structured,
fork-shaped nonlinear crystals. The results are summarized
in Section 5.

2. Spatial Distribution of SPDC:
First-Order Correlations

Correlations between photons in quantum optics is an impor-
tant measure for establishing their quantum behavior, and en-
ables to distinguish between different states of light, such as
coherent states or number states (bunched or anti-bunched).[42]

In the slowly varying envelope approximation (SVEA), and un-
der the paraxial approximation, considering correlation at equal
times (t = t′) and at the same detection plane (z = z′), the
first-order correlation function of a wavefunction |𝜓⟩ can be
written as

G(1)
i,j

(
rT , r

′

T

)
=
⟨
𝜓|𝜙†

i (rT )𝜙j

(
r
′

T

)|𝜓⟩ (1)

where 𝜙i(r) =
∑

q
eiq⋅r√
V
aki+q is the paraxial envelope operator[42]

around a carrier with a wavevector ki (the index i denotes the
carrier frequency 𝜔i and in general also the polarization state),
aki+q is the annihilation operator, annihilating a photon in mode
ki + qwith q being the paraxial wave vectors satisfying |q|≪ |ki|.
This operator annihilates a photon at position r, and is the Fourier
transform of the annihilation operator. The first-order correlation
measures the field autocorrelation among different frequencies
(𝜔i,𝜔j) and transverse positions (rT , r

′
T ). Its diagonal elements

(i.e., i = j and rT = r′T ) denote the probability of finding one pho-
ton at frequency𝜔i and in position rT , and is the expectation value
of the number density operator.
In the case of SPDC, the initial state is vacuum |𝜓⟩ =|0⟩;

hence, the operators can only couple the vacuum state to any

single-photon state in mode k, |1k⟩, so now we write the first-
order correlation function as

G(1)
i,j (rT , r

′
T ) =

∑
k

⟨
0|𝜙†

i (rT )|1k⟩⟨1k|𝜙j(r
′
T )|0⟩ (2)

This implies that in order to compute it, one must trace over
all possible single photon modes k, something that can be nu-
merically tedious. Instead, it is possible to approximate this sum
by tracing over a large number N of independent “white noise”
modes |k(n)rand⟩ (n = 1…N), defined as

|k(n)rand⟩ =
∑
k′

ei𝜃
(n)
k′ |1k′⟩ (3)

where 𝜃(n)
k′
is a randomphase chosen from a uniformdistribution.

It can be shown (see Supporting Information) that for a large N,
the sum converges to the first-order correlation function.

G(1)
i,j

(
rT , r

′
T

)
= lim

n→∞

1
N

N∑
n=1

⟨
0|𝜙†

i (rT )|k(n)rand⟩⟨k(n)rand|𝜙j

(
r′T

)|0⟩
(4)

While the value of this is initially zero, the SU(1,1) dynamics[43]

of the operators mixes between the creation and annihilation op-
erators (becoming superpositions of them), thus giving rise to
nonzero values. Other expectation values that are quadratic in the
field operators can be calculated in this manner, and in particu-
lar, the calculation of the second-order correlation function will
be derived later, in Section 3. We conclude that in order to cal-
culate the correlation function, we can sum over a large number
N of photon wavefunctions[44] (c-number fields) ⟨k(n)rand|𝜙j(r

′
T )|0⟩.

We define the two terms in Equation (4) as

Avac;(n)
j (rT ) ≡ ⟨

0|𝜙j(rT )|k(n)rand⟩
Aout;(n)
j (rT ) ≡ ⟨

k(n)rand|𝜙j(rT )|0⟩ (5)

Both these fields can be simulated as complex matrices, and
can be understood as the vacuum fluctuations (Avac;(n)

j (rT )) and

the generated signal\idler (Aout;(n)
j (rT )) at a certain frequency.

For measuring the correlation between two photons in differ-
ent transverse modes kT ; k

′
T rather than two transverse posi-

tions rT and r′T (recall that we are calculating correlations at
equal planes z = z′), these should be projected on an orthonor-
mal basis, for instance, plane wave decomposition given by
the Fourier transform Aout∖vac;(n)

i (kT ) = FT[Aout∖vac;(n)
j (rT )]. Conse-

quently, we can approximate[45] the first-order correlation in the
wavevector representation as

G(1)
ij

(
kT ; k

′
T

)
≃ 1

N

N∑
n=1

[
Aout;(n)
i

(
kT

)]∗
⊗ Aout;(n)

j

(
k′T

)
(6)

where⊗ is the outer (Kronecker) product (A⊗ B)i,j,k,l = Ai,j ⋅ Bk,l.
Note that the projection can be generalized to other orthonormal
spatial bases (via modal decomposition), such as Hermite–Gauss
or Laguerre–Gauss modes.
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In order to derive equations for the evolution of the fields
from Equation (5) along the nonlinear crystal, one needs first to
solve the Heisenberg equations of motion for the SPDC Hamil-
tonian (see Supporting Information for more details), and then
calculate the matrix element between the vacuum |0⟩ and the
random noise distribution |k(n)rand⟩. We consider SPDC, where
a pump wave, with frequency 𝜔p and complex field amplitude
Ap, spontaneously converts into two photons—signal and idler,
with frequencies 𝜔s and 𝜔i, satisfying energy conservation via
𝜔p = 𝜔s + 𝜔i. The pump is assumed to be strong relative to the
generated fields, and thus is treated as a classical, undepleted co-
herent state. We obtain two pairs of coupled equations

i
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= −

∇2
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2ki
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i + 𝜅ie−iΔkz
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s

)∗
i
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s
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⊥
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(
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i
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s

𝜕z
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∇2
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(
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i

)∗
(7)

where ∇2
⊥
is the transverse Laplacian; ks, ki are the wave vectors

of the signal and idler, respectively; z is the propagation coordi-

nate; 𝜅j=i,s(r) =
𝜔2
j

c2kj
𝜒 (2)(r)Ap is the coupling strength for the signal

and the idler fields, where 𝜒 (2)(r) is the (spatially varying) second-
order susceptibility, c is the speed of light, andΔk = kp − ks − ki is
the phase mismatch. These equations can be numerically solved
similarly to the classical coupled wave equations, by using the
split-step Fourier method.[46] The initial values of the fields given
in Equation (5) are set to zero matrices (Aout;(n)

j ) and a white

noise distribution with random phases (Avac;(n)
j ). Physically, the

quasi-probability distribution of the vacuum field is the Wigner
function[47] with n = 0 photons, which reduces to a Gaussian
function in phase-space.[48] Gaussian noise (white noise), has
zero mean, suiting the physical description, nut vacuum also
has nonzero variance ⟨ΔE2vac⟩ = ℏ𝜔j

2𝜖0njng,jV
, V denoting the quanti-

zation volume and nj, ng.j are the refractive and group indices,
respectively, for 𝜔j. Intuitively, this is equivalent to setting the
power Pj = 2nj𝜖0c

V
L
⟨ΔE2vac⟩ for the field Avac

j (where L is the crys-
tal length) to be consistent with the zero point quantum noise at
z = 0:

P = c
ng,jL

ℏ𝜔j (8)

The advantage of the approach we present is that it enables,
starting with a numerical realization of the vacuum noise, to
calculate the statistical properties of the signal and idler output
fields. This efficient calculation, using split-step Fourier, incor-
porates simultaneously the effects of diffraction and nonlinear
coupling. Convergence of the first-order correlation is fast and
requires only several iterations, which are independent of each
other, so can be easily made parallel. Moreover, as will be shown

in Section 3, the output fields and vacuum fields also enable to
calculate the second order correlation function.

2.1. SPDC in a 2D Rectangular Nonlinear Photonic Crystal

2D periodically poled crystals[49,50] have been realized experimen-
tally before in SPDC, based on either a rectangular lattice[11,12] or
on a hexagonal lattice.[10,13] These crystals are attractive sources
for the generation of beam-like path entangled photons. For the
rectangular lattice, the entangled photons appear when the in-
cident pump beam propagates in parallel to the photonic lattice
axis, as can be readily calculated through wave-vector analysis of
the reciprocal lattice (see Figure 1(b1)).
In order to demonstrate how this simulation method can be

used to predict the output for crystals with spatially varying
nonlinearity, we simulated SPDC in a 2D rectangular nonlinear
photonic crystal. Changing the incidence angle will change the
spatial output of the emitted light. In order to compare the sim-
ulated output with a spatially varying nonlinearity, we show new
experimental results in Figure 1c of the spatial distribution of
the emitted photon pairs in the Fourier plane for different inci-
dent angles. The experimental setup is identical to that reported
in ref. [11] but with the crystal set at different angles with re-
spect to the pump beam. The rectangular lattice was realized in
a Mg-doped stoichiometric LiTaO3 crystal,

[51] with poling periods
of 13.46 and 6.4 µm in the transverse and propagation directions,
respectively. The nonlinear modulation was based on a circular
motif having a radius of 2.7 µm in each lattice point. The pump
used was a narrow linewidth diode laser with 35 mW at a wave-
length of 404 nm. The signal and idler have the same wavelength
of 808 nm, and were measured in the far field using a cooled
sensitive camera, placed after a 3 nm bandpass filter centered
at 808 nm.
In order to theoretically compute the SPDC far-field pattern,

we used the derived expression of the first-order correlation func-
tion, Equation (6), for the degenerate case of i = j, kT = k′T , which
is the autocorrelation of the (say signal) output field at frequency
𝜔s and specific wave vector ks. Since the Kronecker product in
Equation (6) squares the amount of memory needed (the com-
putation for two M ×M matrices yields a M ×M ×M ×M ma-
trix), for computing only the far-field pattern, we can directly
compute the diagonal elements to reduce the memory necessary
from O(M4) to O(M2). The far-field image converges quickly and
is clearly evident after very few iterations. This configuration is
very complex, and required high pixel resolution, as well as a long
crystal (M = 500 and 5000 longitudinal steps), so each split-step
Fourier iteration lasted ≈13 min on a standard PC (12 GB RAM).
Figure 1d shows the simulated spatial distributions for the differ-
ent incidence angles, for eight noise realizations. Clearly, excel-
lent agreement can be found between the simulation and experi-
ments, as presented in Figure 1c,d. Although the general trend of
the emission pattern can be predicted geometrically using wave-
vector considerations, ourmethod providesmuchmore informa-
tion, as it reproduces the relative intensities and higher-order ef-
fects (detailed in the next sections), all in a single calculation. For
more complex structures, such as aperiodic nonlinear photonic
crystals,[5] these advantages become crucial for the correct calcu-
lation of the SPDC emission pattern.
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Figure 1. Simulation and experimental results for SPDC in a 2D rectangular nonlinear photonic crystal. a) Experimental setup. The crystal was rotated
by an angle 𝜃 and the emission was measured at the Fourier plane. b) Reciprocal lattice representation of the crystal.[11] The Lattice constants are a1 =
6.4 µm and a2 = 13.6 µm. b1) For 𝜃 = 0◦, the top shows the G2,1 and G2,−1 process creating the beam entangled photons, and the bottom shows the
parasitic G2,0 process creating the outer ring. b2) Same for 𝜃 ≠ 0◦. c) Experimental results and d) simulation results for varying values of 𝜃.

3. Coincidences of SPDC Light: Second-Order
Correlations

The second-order correlation function G(2)
ijji (kT , k

′
T ; k

′
T , kT ) =⟨a†i (kT )a†j (k′T )aj(k′T )ai(kT )⟩, denotes the probability of finding

one i photon in mode kT and another j photon in mode k′T .
Experimentally, this quantity corresponds to the coincidence rate
between these two photons. Since the Hamiltonian of SPDC is
quadratic, and since vacuum is a Gaussian state, the resulting
output state is also Gaussian, and in the general case corre-
sponds to the multi-mode squeezed vacuum.[52] Conveniently, all
higher moments of its Wigner function can be computed from
the lowest order moments, namely the quadratic expectation
values of the fields.[53] Specifically, we have that[54]⟨
a†i
(
kT

)
a†j

(
k′T

)
aj
(
k′T

)
ai
(
kT

)⟩
=
⟨
a†i
(
kT

)
ai
(
kT

)⟩⟨
a†j (k

′
T )aj

(
k′T

)⟩
+ |⟨a†i (kT )aj(k′T)⟩|2 + |⟨ai(kT)aj(k′T )⟩|2 (9)

So, after applying this rule:

G(2)
ijji

(
kT , k

′
T ; k

′
T , kT

)
= G(1)

ii

(
kT ; kT

)
G(1)

jj

(
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′
T

)
+ |G(1)

ij

(
kT ; k

′
T

)|2
+ |Qij

(
kT ; k

′
T

)|2 (10)

where the first two terms on the right-hand side depend on the
first-order correlation function and

Qij

(
kT ; k

′
T

)
= 1

N

N∑
n=1

Avac
i

(
kT

)
⊗ Aout

j

(
k′T

)
(11)

encompass the enhancement of the vacuum in the processes.

This calculation yields matrices the size of M2 ×M2 (or M ×
M ×M ×M) due to the outer product, as should be expected for
G(2). In most cases, some of the dimensions can be traced over to
receive a 2D image which encompasses the main correlations, as
will be outlined below in specific examples.
The algorithm of the simulation is now as follows: 1) Initialize

the (structured) pump and (structured) crystal. 2) Initialize four
M ×M matrices: two zero matrices and two white noise distri-
butions with variance according to Equation (8). 3) Solve Equa-
tion (7) using split-step Fourier. 4 Project the output fields on a
desired orthonormal basis. 5) Calculate Q (n)

ij from Equation (11)

and G(1;n)
ij from Equation (6), and add them to the accumulated

value of each. Iterate over steps (2) to (5) for a large N number
of times, each time setting a different random distribution for
Avac
j . 6) When finished iterating, reduce the matrix sizes by trac-

ing over two dimensions of choice, and calculate G(2)
ijji according

to Equation (10). A flow chart of the algorithm can be found in
Figure 2. Each iteration (n) is independent of all other iterations;
therefore, all N iterations can be run in parallel given a sufficient
number of cores in order to speed up the simulation.

3.1. Correlations in a Degenerate SPDC Process in a 1D
Periodically Poled Crystal

An instructive example of the method and its advantages with
structured light would be to consider a type-0, frequency degen-
erate SPDC process in a periodically poled crystal with period Λ.
In this process, momentum conservation dictates that the spon-
taneously generated photon pairs from a pump beam parallel to
the optical axis, are emitted into a cone, concentric with the op-
tical axis, wherein the far-field pattern corresponds to a circle
(Figure 3a). The theoretical opening angle 𝜃 of the cone is
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Figure 2. Schematic flow chart of the simulation procedure. The pump and crystal are determined initially and remain the same for all iterations. In each
iteration, the initial signal (red) and idler (blue) output wavefunctions Aout are set to a zeroM ×Mmatrix, and the signal and idler vacuumwavefunctions
Avac are initialized as a (different) random white noiseM ×Mmatrix. The coupled wave equations are then solved using the Split Step Fourier method.
The output solution is then projected on the desired base (Fourier transform, Hermite–Gauss, etc.). These are then used to calculate Qi,j and G

(1)
i,j , which

areM ×M ×M ×M large matrices. In each iteration, these twomatrices are updated. After iteratingN times, one can calculate the single photodetection
probability, P(k) = G(1)

i,j (k, k), by taking the diagonal elements of G(1)
i,j . For calculating the second order correlation, G

(2)
ijji , Qi,j and G

(1)
i,j are first squared.

After, qi,j and g(1)i,j , the reduced matrixes with dimensions M × M, are calculated by tracing over two of their four dimensions d1, d3. Finally, they are
summed to calculate the second-order correlation matrix.

determined by the phase-matching condition

𝜃 = cos−1
(
kp −

2𝜋
Λ

2ks

)
(12)

For small pumppowers, onemay use first-order perturbation the-
ory to obtain analytically the generated two-photon state, from
which both the intensity pattern, G(1) (since i = j, we omit the
indices), and the coincidence rate, G(2), could be derived.[42,55]

A characteristic feature of these photons is their demonstration
of anti-correlation: they are always emitted into opposite direc-

tions on the cone (see Figure 3b). This means that if one pho-
ton is detected on a specific point on the circle, its partner will
be detected on the opposite side, with a 180◦ difference between
their azimuthal angles. To demonstrate these features, we sim-
ulated such an SPDC process in a 5 mm long periodically poled
lithium niobite (PPLN) crystal, with a 532 nm CW pump beam
with a power of 5 mW and 100 µm waist. The far-field screen
was imaged R = 10 cm away from the crystal, and the gener-
ated field amplitudes at 1064 nm were calculated. Since this is
a simple configuration, we used relatively low resolution (80 ×
80 pixels for each matrix, 5000 longitudinal steps). Unlike the
first-order correlation which converges quickly, the second-order
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Figure 3. Simulation of degenerate SPDC in PPLN. a) The 532 nm input pump is converted to two 1064 nm signal and idler photons which form a ring
in the far field due to momentum conservation, as depicted in the vector diagram. b) Second-order correlations are observed by coincidence counting
of photons, collected at different azimuthal angles on the emission circle. c,d) The first order correlation G(1)(rT , rT ) in the far field, simulated for c) a
5 mW pump power and d) a 1 kW pump peak power. The first-order correlation is normalized to yield the photodetection probability density per unit
area, in units Hz mm−2. Angles 𝜃1 and 𝜃2 are the azimuthal emission angles of signal and idler photons on the circle, with respect to the x-axis. e,f) The
simulated second-order correlations,G(2)(𝜃1, 𝜃2), for e) 5 mW pump power and f) 1 kW peak pump power. The second-order correlations are normalized
to yield the coincidence rates per unit angle squared with respect to a coincidence window of 𝜏 = 1 ns, in units of Hz rad−2. Both (e) and (f) exhibit
the expected coincidence peak along |𝜃1 − 𝜃2| = 180◦, whereas the strong pump (f) also demonstrates photon high order effects, as depicted by the
𝜃1 = 𝜃2 coincidence line.

correlation needs more iterations to converge, as it is directly de-
pendent through Qi,j (Equation (11)) on the random fields. In or-
der to compute it, we iterated over 300 random distributions, for
a total of ≈42 min.
In Figure 3c, we plot G(1)(rT , rT ) in far-field coordinates rT =

(R∕k0)kT , with k0 denoting the carrier wave number in free space,
and kT = (kx, ky) is the transverse Fourier frequency, where the
emission circle can be clearly seen. In Figure 3c, G(1)(rT , rT ) is
normalized by the field amplitudes to yield the photodetection
rate per unit area at the detection plane. Using Equation (10), we
also plot G(2)(𝜃1, 𝜃2; 𝜃2, 𝜃1) in Figure 3e, as a function of the two
azimuthal emission angles on the circle, 𝜃1 and 𝜃2, defined in
Figure 3c. We trace over the radial coordinates r and r′ in order
to reduce the matrix dimensions

G(2)
(
𝜃1, 𝜃2; 𝜃2, 𝜃1

)
=

∑
r,r′

{
G(1)

(
r, 𝜃1; r, 𝜃1

)
G(1)

(
r′, 𝜃2; r

′, 𝜃2
)

+ |G(1)
(
r, 𝜃1; r

′, 𝜃2
)|2 + |Q (

r, 𝜃1; r
′, 𝜃2

)|2}
(13)

The second-order correlation function is normalized to yield
the coincidence rate with respect to a coincidence window of

𝜏 = 1 ns. As expected, two distinct coincidence lines, correspond-
ing to |𝜃1 − 𝜃2| = 180◦, can be observed. These lines demonstrate
the photon spatial anti-correlation, as they can be detected at op-
posite azimuthal angles.
However, the first-order perturbation analysis fails[56,57] when

strong pump peak powers are used, as higher-order effects be-
come dominant. In this regime, the photons also demonstrate
high order effects, that is, it is possible to detect two photons
simultaneously at the same azimuthal angle. In that case, the
approximations for G(1) and G(2) derived from the first-order
generated state become inaccurate, and their approximate form
to second-order in the perturbation cannot be derived analyti-
cally in a straightforward manner (actually, in this simple case,
one can use instead the exact solution for the generated state,
namely the multi-mode squeezed vacuum). In contrast, these
correlations can be readily evaluated using our general, nonper-
turbative formalism. To demonstrate this, we repeated the same
simulations but this time with a dramatically increased pump
peak power of 1 kW. The emission pattern of G(1), depicted in
Figure 3e, does not show any significant difference other than
a higher brightness due to the higher conversion rate. How-
ever, for G(2), an additional coincidence line corresponding to
𝜃1 = 𝜃2 can be clearly seen in Figure 3f. This new feature in-
deed demonstrates the anticipated high order effect at higher
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pump powers. Although the above analysis is intuitive for this
simple example, once non-trivial structures are considered, it is
clear why our formalism can be highly beneficial for the accu-
rate calculation of SPDC correlations in any pumping regime.
A Python code showing this example is available in Supporting
Information.

4. SPDC with Structured Beams

4.1. SPDC with Hermite–Gauss Pump Beams

An important family of structured beams are the Hermite Gaus-
sian (HG) modes. These modes are solutions to the paraxial
Helmholtz equation in Cartesian coordinates, and are eigen-
states of the free space propagator. Thus, they maintain their
shape when propagating (up to a magnification factor owing
to diffraction), and form a complete discrete basis. An inter-
esting result concerning these modes[22,58,59] shows that the
modal number obeys conservation laws, leading to high or-
ders of entanglement. Following previous works,[22,58,59] we con-
sider a nonlinear crystal pumped with the following HG beam
profile:

En,m
p

(
rT , wp

)
= HGn

(
x, wp

)
HGm

(
y, wp

)
(14)

where x, y are the transverse coordinates, wp is the pump waist,
and HGi are the HGmodes of order i.[60] Being a complete basis,
the generated bi-photon state can be decomposed into discrete
HG signal and idler modes.

|𝜓n,m⟩ = ∞∑
j,l,u,t=0

C(n,m)
j,l,u,t |HGj,l, 𝜎s⟩s|HGu,t, 𝜎i⟩i (15)

with 𝜎i,s denoting the waists of the down converted HG idler
and signal, and for abbreviation, we use HGjl to denote an HG
mode of order j in the x axis and of order l in the y axis. Un-
der the paraxial approximation, and if one models the bi-photon
amplitude using a separable function such as a Gaussian (see
refs. [22,58,59,61] for more details), then the coefficients C(n,m)

j,l,u,t

are also separable (with respect to the two axes) C(n,m)
j,l,u,t = c(n)j,u c

(m)
l,t .

Furthermore, interesting states (such as Bell states) can be ob-
tained for a certain choice of the beam waist 𝜎. This result has
been experimentally confirmed by Kovlakov et al.,[22] who used
a periodically poled crystal pumped with an HG-shaped pump
beam, and measured the output state projected on the HG ba-
sis. The down-converted photon modes were determined using
diffraction from an SLM. This method enables the generation of
Bell states without need for post-selection.
We performed a simulation following this experiment. Here,

a 25 mm PPKTP crystal is pumped with a 407 nm laser having a
waist of ≈30 µm, shaped into HG0,n modes, with n = 0, 1, 2. The
process considered was a type II frequency degenerate (i.e., sig-
nal and idler have the same 814 nm wavelength) SPDC which
enables a simple separation of the signal and idler via their po-
larization. Each output field was decomposed into the HG basis

by projecting the field on HG modes, up to n,m = 50, via (here,
HG modes are normalized to unity)

c(n)i,j = 1

∫∫ ||Aout(rT )||2d2rT ∫ ∫ HG∗
i,j(rT )A

out(rT )d
2rT , (16)

where c(n)i,j gives the normalized mode weights and satis-

fies the normalization condition:
∑

i,j |c(n)i,j |2 = 1. Finally,
for second-order correlations in the Hermite Gauss basis
G(2)(HGj,HGu; HGu,HGj), we traced over the vertical axis
in a similar manner to Equation (13) (with r, r′, replaced by
HGl(y),HGt(y

′) and 𝜃1, 𝜃2 replaced byHGj(x),HGu(x
′)) to receive

G(2) =
∑

l,t |C(n,0)
j,l,u,t|2 = ∑

l,t |c(n)j,u |2|c(0)l,t |2 = |c(n)j,u |2, corresponding to
the horizontal modes relative coincidence rates.
We successfully recover the experimental results of ref. [22],

which can be seen, for example, by comparing Figure 4b with
Figure 2 in ref. [22] where the expected off-diagonal second-order
correlations of the Bell state are clearly evident.

4.2. SPDC with Laguerre–Gauss Beams

Another interesting basis to follow is that of the Laguerre–Gauss
(LGpl) modes, which are solutions of the paraxial Helmholtz
equation, but this time in cylindrical coordinates, with radial
and azimuthal indices p and l, respectively. For every nonzero
l, the beams are vortices carrying ℏl orbital angular momentum
(OAM). These modes are particularly interesting due to their
high capacity for quantum information, as well as their poten-
tial use for generating high-dimensional entanglement.[27,62–64]

The SPDC process in transversely uniformnonlinear crystals has
been shown[24] to conserve OAM between the interacting fields,
such that lsignal + lidler = lpump.
The simulation we present in Figure 5 follows the seminal ex-

periment by Mair et al.,[24] the first to demonstrate entanglement
through OAM conservation. The experiment was done using a
type-I degenerate SPDC with a 351 nm pump beam (signal and
idler at 702 nm), in a 1.5 mm thick BBO crystal. For the simula-
tion, we initialized the pump beam in LG modes with OAM of
lpump = 1, 3,−4, 10, in order to show the versatility of the conser-
vation law. The output field again was projected onto the LG ba-
sis using Equation (16) (and exchanging HG by LG). We traced
over the radial index of the LG modes using Equation (13) (re-
placing r, r′ by LGp, LGp′ and 𝜃1, 𝜃2 by LGlsignal, LGlidler

) in order
to extract the second-order correlation function, G(2)(lsignal, lidler),
which is dependent on the OAM topological charges of the
signal and idler, lsignal and lidler, respectively. OAM conserva-
tion is evident from the results in Figure 5c, as a clear coinci-
dence line, each time shifted by exactly the pump’s topological
charge.
Generation of OAM carrying SPDC photons can be extended

to structured crystals having an edge dislocation, which were
shown to carry quasi OAM.[65–67] Such a dislocation results in a
fork shaped pattern, where the upper half of the crystal has lc
extra transverse periods with respect to the lower part, thereby
creating a fork shape around the center singularity point. These
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Figure 4. Simulations of second-order correlations for SPDC with a Hermite–Gauss pump beam. a) Schematic representation of the experiment: the
pump beam is shaped as an HG mode and illuminates a periodically poled (PP) KTP crystal, phase matched for a type II process. The output photons
are separated by a polarizing beam splitter (PBS), each then projected on an SLM for mode sorting. The output modes (HG modes) are coupled to
detectors for coincidence counting. The pump is shaped as HG 00 (b), 01 (c), and 02 (d), as a function of the horizontal modal number of the signal
and idler. The simulations recover the experimental results reported in ref. [22].

Figure 5. Simulations of first- and second-order correlations for SPDC with a Laguerre–Gauss shaped pump beam in a transversely uniform nonlinear
crystal (BBO). a) Experimental setup: a 351 nm pump beam with OAM of ℏlpump is injected into a BBO crystal. Signal and idler photons at 702 nm with
OAM of ℏlsignal and ℏlidler emerge. Coincidences are observed by projecting onto different LG modes using holograms. b1–b4) Simulated near-field first-
order correlation G(1)(r, r′) for an input pump lpump = 1, 3,−4, 10, respectively. c1–c4) Second-order correlation G(2)(lsignal, lidler) for lpump = 1, 3,−4, 10.
OAM is conserved in the process, that is, lsignal + lidler = lpump, so the coincidence takes the form of straight, parallel, lines, shifted by lpump.
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Figure 6. Simulations of second-order correlations for type 0 SPDC with a fork-shaped crystal. a) Experimental setup: 780 nm Gaussian pump beam is
injected into a LiNbO3 crystal with a fork-shaped transverse poling pattern of different topological charges, with a transverse period of Λ = 1.98 µm.
The beam is inserted at an angle which corresponds to the first diffraction orderm = 1. Signal and idler beams at 1560 nm, emerge co-linearly from the
crystal with OAM of ℏlsignal and ℏlidler. b) Vector diagram of the process, kp, ks, ki are the wave vectors of the pump, signal, and idler, respectively. c1–c3)
Simulated second-order correlation G(2)(l, l′) for lc = −1,−3,−10. Quasi-OAM is conserved in the process, lsignal + lidler = lpump + lc, so the coincidence
matrix takes the form of straight, parallel, lines, shifted by lc (lpump = 0).

fork-shaped crystals add their quasi-OAM, thereby providing a
modified OAM conservation rule:

lsignal + lidler = lpump +mlc (17)

where ℏlc is the quasi-OAM of the crystal, and m is the diffrac-
tion order. This type of configuration was suggested to create a
two-photon N00N states using single photons carrying OAM[33]

in the m = 1 and m = −1 diffraction orders. We follow theoret-
ical work[34] on fork-shaped crystals to show that Equation (17)
is evident from the second-order correlations simulated by our
program. A 780 nmGaussian pump beam is inserted at an angle
𝜃 into a 0.5 mm thick LiNbO3 crystal with a forked shape trans-
verse poling pattern of differing topological charge, 𝜒 (2)(x, y) =
sign[cos( 2𝜋

Λ
x + lc𝜑(x, y))], where x, y are the transverse coordi-

nates, 𝜑(x, y) = tan−1(y∕x) is the polar coordiant, and Λ is the
transverse period. The period Λ and the angle of the input pump
were determined by solving the wave vector diagram, as depicted
in Figure 6b.

kp sin (𝜃) =
2𝜋
Λ

kp cos (𝜃) − ks − ki = 0 (18)

which results in a period of Λ = 1.98 µm, at an angle 𝜃 =10.6°.
The pump waist was chosen for optimal coupling, that is, wp =√
L∕kp = 5.4 µm. Decomposition of the output was preformed

for −20 ≤ l ≤ 20 and 0 < p ≤ 20 modes, with p denoting the ra-
dial mode number, and iterated over 300 different input noise re-
alizations. The results in Figure 6c–e show a clear straight line as

a function of the signal and idler azimuthal indices, which corre-
sponds to the conservation law, Equation (17), with lpump = 0 and
for different quasi OAM.

5. Conclusion

In summary, we have demonstrated a simulation tool for the
calculation of SPDC first- and second-order correlations, in the
presence of sophisticated structures of the pump beam and/or
nonlinear photonic crystal. Being nonperturbative, our method
is valid for all pumping regimes, as opposed to the commonly
employed first-order perturbation analysis which fails, for exam-
ple, when high peak-power pulsed lasers are used. While our
computation included only second-order coupling, one can ex-
tend this work to other high order effects such as cross phase
modulation,[68] as long as the Hamiltonian stays quadratic. As a
proof of concept, we examined a wide range of structured light
beams and structured crystals for which our simulation correctly
reproduces the experimentally measured SPDC correlations or
the theoretically calculated ones. For 2D nonlinear photonic crys-
tals at different angles with respect to the optical axis, we re-
cover new unpublished experimental results for the emission
pattern, surpassing the simple wave-vector considerations com-
monly used for evaluating the output state. In addition, we re-
cover the expected conservation laws for the optical modes in
both the Hermite–Gauss basis (where we reproduce the exper-
imental results of ref. [22]), as well as in the Laguerre–Gauss
basis (where we recover the experiment in ref. [24] and the theo-
retical predictions in ref. [34]). Whereas here we considered spa-
tial correlations of single frequency beams, our method can be
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easily extended to handle broad frequency sources and nonlin-
ear crystals for spectral shaping,[69–73] thereby enabling to design
and analyze spectral correlations, for example, the joint spectral
amplitude in SPDC process, as well as prospects for frequency
and spatial correlations.[74–77] This formalism can be generalized
for other Gaussian states, such as thermal light and squeezed co-
herent states.[78] All our analysis is based on the paraxial formal-
ism of quantum optics[42] (see Supporting Information), which
is suitable for almost all experimental implementations in bulk
crystals. Extending this formalism outside the paraxial approxi-
mation will require much greater computational complexity (in
time and memory), for example in waveguides and resonators.
Our method can facilitate the design of complex crystal struc-

tures and spatially varying input pump beams in order to arbi-
trarily shape down-converted photons and control higher-order
correlations. An example of Python code for this method can be
found in Supporting Information. Please acknowledge this work
if using the code for simulations.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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[69] A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, A. G. White,Opt.

Express 2011, 19, 55.
[70] A. Dosseva, Ł. Cincio, A. M. Brańczyk, Phys. Rev. A 2016, 93, 013801.
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