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ABSTRACT
In this perspective article, we discuss the analogy between spin transport in magnetization texture and the nonlinear process of sum frequency
generation, where the signal and idler complex amplitudes represent the two-dimensional spinor, while the nonlinear coupling represents the
material magnetization. This analogy unveils new nonlinear optical effects in both spatial and temporal domains, including the analog of the
famous Stern–Gerlach effect, the topological Hall effect in magnetic skyrmion structures, and the transverse localization of spin currents in
a disordered magnetic spin-glass phase. Moreover, it enables us to realize new all-optical devices that manipulate superposition states of the
signal and idler. Examples include a pump-controlled spin valve, which can either reflect or transmit the signal-idler waves when they are
in-phase, and a spin waveguide that guides only in-phase signal-idler waves.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0241546

I. INTRODUCTION

Nonlinear optics is used nowadays in numerous applications,
including the frequency conversion of coherent light sources into
spectral regimes in which compact and efficient lasers are not avail-
able, the generation of non-classical states of light such as entangled
photon pairs and squeezed light, phase-sensitive parametric ampli-
fication, and more. Nonlinear interactions are typically categorized
based on the type of nonlinearity of the material. Second-order non-
linear interactions, such as second harmonic generation, sum- (SFG)
and difference-frequency generation, and spontaneous parametric
down-conversion, utilize χ(2), the second-order susceptibility tensor
of the material. These processes exist only in a rather small class
of non-centro-symmetric materials. In contrast, third-order non-
linear interactions, such as for example, third harmonic generation
or spontaneous four-wave mixing, can occur in every material by
utilizing χ(3), the third-order susceptibility tensor.

For efficient nonlinear processes, the total energy and momen-
tum of the interacting light waves should be maintained. Tradition-
ally, nonlinear interactions are analyzed by the so-called coupled
wave equations (CWEs),1 which describe the rate of change of the
amplitude of each of the interacting waves, with respect to either
the propagation spatial coordinate or the time coordinate. However,
in recent years, a new approach was introduced for analyzing these

interactions, particularly for the case of three-wave mixing with one
strong (hence nearly non-depleted) pump wave,2,3 or alternatively
for the case of four-wave mixing (FWM) with two strong and nearly
non-depleted pump waves.4 In these cases, only the two remaining
waves, traditionally called signal and idler waves, exchange energy,
and the dynamics are that of a two-level system. This is the same
dynamical behavior that occurs for many other systems, such as
two coupled mechanical pendula, a two-level atom coupled by an
electromagnetic field, a spin-1/2 particle in an external magnetic
field, two coupled waveguides, and more. Moreover, many tools
and concepts that were developed in those analogous systems can
now be implemented to study nonlinear optical interactions. These
include, for example, a geometrical representation of the state and
the dynamics on a Bloch sphere,2 eigenvalue diagrams,3,5 accumu-
lation of geometric phase in nonlinear interaction,6–9 broadband
adiabatic frequency conversion (the nonlinear optics analog of rapid
adiabatic passage in atomic physics),2,3,10 and more.

Specifically, in this article, we explore the analogy between the
nonlinear optical interaction and the interaction of spin-1/2 in an
external magnetic field. As will be shown in Sec. II, the CWEs can
be written analogously to the well-known Pauli equation, which
describes spin dynamics in a weak transverse magnetic field. In
this case, the spin analog is a 2 × 1 vector of the complex ampli-
tudes of the signal and idler waves, and the effective magnetic field,
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or magnetization, is given by the nonlinear coupling. This enables
the realization, via nonlinear optics, of the all-optical Stern–Gerlach
effect.

In the original Stern–Geralch experiment,11 silver atoms were
split into two distinct directions by a transversely varying magnetic
field, depending on the state of the spin of the valence electrons in
that atom. Similarly, using the aforementioned analogy, it is possi-
ble to show that light beams or light pulses can be split either in
space or in time by varying the nonlinear coupling, depending on
the relative phase between the signal and idler fields. This will be
discussed in detail in Sec. III A. Other interesting effects that will
be reviewed here include the transverse localization of spin currents
in disordered nonlinear material12,13 (Sec. III B) and the topological
Hall effect in optical magnetic skyrmions14 (Sec. III C).

Moreover, we describe a new class of optical devices that exhibit
different responses for in-phase signal and idler waves (“spin up”)
compared to out-of-phase signal and idler waves (“spin down”).
These include a pump-controlled spin valve device15 (Sec. III D) that
either reflects or transmits the in-phase signal-idler waves, a spin
beamsplitter that transmits the in-phase signal-idler waves while
reflecting the out-of-phase signal-idler waves,15 and a spin wave-
guide that guides only in-phase signal-idler waves16,17 (Sec. III E).
A short summary and suggestions for future work are discussed in
Sec. IV.

From a broader perspective, the analogies discussed in this
perspective article form the basis for a new venue for an exper-
imental platform to emulate spin physics. It enjoys the widely
accessible platform of nonlinear optics (or other optical systems as
discussed below). This in turn offers new avenues for controlling
various degrees of freedom, such as wavelength and polarization,
with promising prospects for high-speed all-optical control.

II. THEORETICAL ANALYSIS
Assuming the approximations of slowly varying envelopes

and non-depleted pump, the CWEs governing the SFG process in
second-order nonlinearity can be expressed in general as follows:
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Here, Aj, kj, and ωj with j = s, i, p (for signal, idler, and pump, respec-
tively) are the slowly varying complex envelope, wavenumber, and
angular frequency for each of the interacting fields. ∇2

T = ∂2

∂x2 + ∂2

∂y2

is the transverse Laplacian, where x and y are the transverse axes, β2s
and β2i are the dispersion coefficients of the signal and idler, respec-
tively, deff is the effective second-order nonlinear coefficient, and
c is the speed of light in vacuum. The propagation axis is denoted
by z and τ = t − z

vg
is the time in a reference frame moving at the

group velocity, vg , of the waves. The wave number mismatch is
Δk′ = kp + ki − ks and stems from material dispersion. To reduce
phase mismatch and obtain an efficient nonlinear process, the quasi-
phase matching technique is commonly used.1,18 In this technique,
the nonlinear medium is spatially modulated and can be expressed
by a Fourier series: d(z) = ∑jdj exp(iqjz). Assuming that only the

first-order term in the Fourier series phase-matches the interaction,
the effective wave number mismatch becomes Δk = kp + ki − ks − q1,
where q1 is the effective wave number of the crystal [see Fig. 1(a)],
and the magnitude of the nonlinear terms in the case of periodic
modulation with 50% duty cycle is deff = d1 = 2

π dmn, where dmn is the
relevant component of the second-order susceptibility tensor, χ(2).
The two terms in brackets on the left-hand side of Eq. (1) represent
diffraction and dispersion, respectively. In the case of continuous
waves (CW), the dispersion term is neglected, while in waveguides,
the diffraction term is ignored.

For third-order nonlinearity in an FWM process, the general
form of the CWEs under the approximations of slowly varying
envelopes and non-depleted pumps includes both dispersion and
diffraction terms. However, in an optical waveguide, the CWEs can
be simplified to

i
∂Ai

∂z
− β2i

2
∂2

∂τ2 Ai = −2γAsAp1A∗p2e jΔkz ,

i
∂As

∂z
− β2s

2
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∂τ2 As = −2γAiAp2A∗p1e−jΔkz.
(2)

Here, Ap1 and Ap2 are the slowly varying complex envelopes of the
two pumps, and the wave number mismatch is Δk = kp1 + ki − kp2
− ks, where kp1 and kp2 are the wavenumbers of the two pumps [see
Fig. 1(b)]. γ is the Kerr nonlinear coefficient and is expressed in units
of W−1 m−1.

By introducing normalized fields in the rotating frame, ψi/s
= (∣Ai∣2 + ∣As∣2)

−1/2
exp (∓ iΔkz

2 )Ai/s, the CWEs for either SFG or
FWM processes, with dispersion or diffraction, can be written in a
matrix form with a position-independent coupling matrix:

i
∂

∂z
(ψi

ψs
) = (C1p2 − σ ⋅M)(ψi

ψs
). (3)

In Eq. (3), C1 is either 1/2k or −β2/2 for SFG and FWM pro-
cesses, respectively, p represents the effective momentum operator,
σ = (σx, σy, σz) is the Pauli matrix vector, and M is the synthetic
magnetization vector, defined as follows:

M =M0(x̂ cos (ϕ) + ŷ sin (ϕ)) + ẑ
Δk
2

, (4)

with M0 and ϕ are defined in Table I. Equation (3) is mathemati-
cally analogous to the transverse Pauli equation, which models the
behavior of a non-relativistic spin-1/2 particle under the influence
of a weak transverse magnetic field.19 The specific interpretation of
Eqs. (3) and (4) depends on whether it pertains to SFG or FWM with
dispersion or diffraction. These scenarios are summarized in Table I,
where we approximate ki ≈ ks = k due to the long-wavelength pump
approximation. In the case of FWM, we assume that the two pumps
have similar wavelengths; hence, β2i ≈ β2s = β2.

This analogy can be geometrically visualized on a frequency-

domain Bloch sphere, where ψ = (ψi

ψs
) represents the effective pseu-

dospin state vector of the system.2,9,20 In this representation, the idler
and signal frequencies correspond to the north and south poles of
the Bloch sphere, respectively. The equator hosts equal superposi-
tions of the signal and idler frequencies, while any other point on the
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FIG. 1. Illustration of nonlinear optical processes. (a) An SFG process: a pump (in green) and idler (in blue) interact within a nonlinear photonic crystal to generate the
signal (in red). Quasi-phase matching is used to achieve phase matching. The momentum conservation and energy conservation requirements are shown in the inset.
(b) An FWM process in an optical fiber: two pump beams together with an idler beam (in blue) generate the signal (in red), with phase matching naturally satisfied. The
momentum conservation and energy conservation requirements are shown in the inset. (c) Frequency-domain Bloch sphere: the state vector S processes along a circle
around the magnetization vector, M. The z component of the magnetization vector is controlled by the momentum mismatch, Δk, with θ denoting the elevation angle. The
radial component of M is defined by the nonlinear coupling strength, M0, and its radial direction is defined by ϕ, the azimuthal angle, given by the relative phase between
the poling phase and pump phase front or between the two pump wavefronts, depending on whether we employ the SFG or FWM frameworks, respectively.

TABLE I. The physical parameters of SFG and FWM nonlinear processes, under the non-depleted pump approximation,
considering both diffraction and dispersion effects. ϕp, ϕp1, and ϕp2 are the phases of the pumps, and ϕNLPC is the modulation
phase of the nonlinear photonic crystal (NLPC).

SFG FWM

Dispersion Diffraction Dispersion Diffraction

C1 −β2/2 1/2k −β2/2 1/2k
Effective momentum operator, p −i ∂

∂τ −i∇T −i ∂
∂τ −i∇T

Synthetic magnetization magnitude, M0
2∣deffAp ∣k

nins

2∣deffAp ∣k
nins

4∣γAp1A∗p2∣ 4∣γAp1A∗p2∣
Synthetic magnetization phase, ϕ ϕp − ϕNLPC ϕp − ϕNLPC ϕp2 − ϕp1 ϕp2 − ϕp1

Temporal/transverse axis, ζ τ x τ x
Fourier axis, ξ ω kx ω kx

Sign, C2 −1 1 −1 1

surface represents a state vector with different signal and idler pop-
ulations and relative phases. The dynamics between the signal and
idler fields during the nonlinear interaction can then be described as
the precession of the Bloch vector, S = ψ†σψ, along a circle around
the synthetic magnetization vector M, according to the following
equation:2,9

∂

∂z
S =M × S. (5)

In terms of field amplitudes, Sx = 1
N

√
nins
ωiωs

2Re(e−iΔkz/2A∗i As),

Sy = 1
N

√
nins
ωiωs

2 Im (e−iΔkz/2A∗i As), and Sz = 1
N (

ni
ωi
∣Ai∣2 − ns

ωs
∣As∣2). In

addition, the magnitude ∣S∣ =
√

S2
1 + S2

2 + S2
3 is equal to 1 for a sys-

tem in a pure state and <1 for a system in a mixed state. This
geometrical representation, as well as the precession of the Bloch
vector around the synthetic magnetization vector, is illustrated in
Fig. 1(c).
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Assuming phase-matched processes, that is, Δk = 0, the syn-
thetic magnetization vector, M, is purely transverse with M =MT
=M0(x̂ cos (ϕ) + ŷ sin (ϕ)). For the Stern–Gerlach experiment, we
set the synthetic magnetization near half of the maximal value, so
that it can be linearly approximated as ∣M∣ =M1 + ζM′, where M1 ≈
M0/2. Namely, a gradient in the synthetic magnetization is present.
Equation (3) can be diagonalized in the Fourier space, resulting in
two eigenstates:

∣ψ±⟩ =
∣ψs⟩ ± e−iϕ∣ψi⟩√

2
. (6)

The spinor as a function of propagation coordinate z can be
expressed using the effective propagator, exp(−izH±), as ∣ψ⟩(z,ω)
= (exp (−izH+)∣ψ+⟩⟨ψ+∣ + exp (−izH−)∣ψ−⟩⟨ψ−∣)∣ψincident⟩, where
H± = −C1ω2 ∓M1 ∓ iC2M′ ∂

∂ξ represents the two effective Hamil-
tonians corresponding to the two eigenstates given in Eq. (6).21

The effective propagator can be computed using the Zassenhaus
formula:

exp (−izH±) = exp(±izM1 −
i
3

C1C2z3(M′)2) exp(∓zC2M′
∂

∂ξ
)

× exp (−izC1ξ2 ∓ iC1C2z2M′ξ). (7)

Here, the term exp (∓zC2M′ ∂
∂ξ ) serves as the translation operator

in the ξ dimension, while the term exp(∓iC1C2z2M′ξ) introduces
a shift along the ζ axis, with the direction varying according to
the eigenstates. Both of these correspond to the nonlinear optical
Stern–Gerlach effect in either time or space. The term exp(±izM1)
represents distinct phase accumulations for each eigenstate, which
can lead to Rabi oscillations between the signal and the idler, a char-
acteristic phenomenon of two-level systems. These oscillations arise
from the interference between the two eigenstates. Therefore, when
the incident spinor is a pure eigenstate, no oscillations occur. The
term exp(−izC1ξ2) is directly related to diffraction or dispersion,
and the term exp (− i

3 C1C2z3(M′)2) represents a phase that is cubic
in z and quadratic in M′, commonly referred to as the Kennard
phase.22–24

III. SPINTRONIC EFFECTS AND DEVICES
The above analogy between spin transport in 2D magnetic

materials and the dynamics of the signal and idler fields within a
quasi-phase-matched SFG process establishes a controllable optical
system for exploring spin transport in complex magnetic materi-
als, which is challenging to investigate in current condensed matter
physics techniques. In addition, it opens possibilities for realiz-
ing novel spintronic-inspired effects with light. This allows the
creation of all-optical devices for controlling and manipulating two-
frequency signal-idler light beams, with promising applications in
both classical and quantum information processing. In the next
sections, we present several examples of such applications.

A. Optical realizations of the Stern–Gerlach
effect in space and time

Since the first theoretical work by Karnieli and Arie,20

there has been a surge in experimental realizations of all-optical
Stern–Gerlach effects utilizing the analogy between spin transport

and nonlinear media. The first was published in 2022,25 where the
authors used pump shaping to introduce a linear gradient in the
nonlinearity. In this work, using a regular periodically-poled KTP
(PPKTP) crystal, an input idler beam was transversely displaced to
coincide with the slopes of a wide pump. Then, by increasing the
pump power, a clear separation of the generated signal was seen
in the far field. In addition, the experiment showed that when a
superposition of the signal and idler enters the Stern–Gerlach appa-
ratus, the signal beam does not split but rather remains a single
Gaussian lobe, whose deflected angle depends on the relative phase
between the generated signal and idler beam, confirming the two-
color nature of the interaction. Later, Mondal and Das26 found that
similar dynamics are also present in difference frequency generation.
In their experiment, they used optical parametric generation, where
a long (50 mm) MgO:PPLN crystal was pumped with an ultrashort
pulse. In this work, they used the natural Gaussian beam shape to
have a circular, radially changing synthetic magnetization. Similarly
to Yesharim et al.,25 with low pump powers, just a single Gaussian
beam was present. When increasing the pump powers, both the sig-
nal and idler showed circular splitting from this main lobe, again
verifying the two-color interaction [see Fig. 2(a)].

The above experimental results both used quadratic nonlinear
processes for the analogy between nonlinear optics and spintron-
ics. Interestingly, several other theoretical and experimental works
showed that the same analogy exists in other optical systems. The
circular polarization of light beams carries spin angular momentum,
and spin-dependent deflection, also known as the spin-Hall effect,
can be observed,28,29 for example, for light that undergoes a helical
light trajectory. It is also interesting to note that the dynamics of the
system can be described by a Stokes vector precession around an
effective magnetic field, in a similar form to Eq. (5). The Spin-Hall
effect was also reported in different types of photonic crystals that
were designed to exhibit strong spin–orbit coupling.30,31

Recently, Liu et al.27 showed that a similar analogy also exists in
an electrically modulated anisotropic medium where the pseudospin
constitutes polarized light. There, the synthetic magnetization was
induced by a trapezoidal lithium niobate crystal, where the two side
faces of the crystal are coated with conductive films to allow the elec-
trical modulation of the refractive index. When circularly polarized
light enters the crystal, a simple Gaussian lobe is present at the crys-
tal output facet. When the electrical voltage slowly rises, two distinct
lobes exist, showing Stern–Gerlach-type behavior [see Fig. 2(b)].
Interestingly, Liu et al.27 showed that when the light is structured as
a vortex vector beam, the beam can be separated into the constituent
wavefronts with different polarizations, therefore acting as a vector
beam analyzer.

Similarly, another example of using the electro-optic effect was
demonstrated by periodic poling of the electro-optic coefficient by
Zhu et al.32 Then, using electrical voltage, right or left circular input
polarized light can be deflected depending on the applied voltage
[see Fig. 2(c)]. Importantly, here the pseudospin constitutes equal
superposition states of horizontally and vertically polarized light, in
contrast to Ref. 27, where the pseudospin constitutes horizontally or
vertically polarized light.

Li et al.33 explored a similar analogy in optically induced wave-
guides. In their work, they used a photorefractive material (SBN)
crystal to induce two optical slab waveguides with a linear coupling
between them [see Fig. 2(d)]. Then, structured probe beams were
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FIG. 2. Experimental realizations of the analogy between the Stern–Gerlach experiment and different optical systems. (a) (left) All-optical Stern–Gerlach effect using SFG.
(right) The generated signal beam splits depending on the pump power. (b) Separating horizontally and vertically polarized light using the electro-optic effect. Vortex beams
can be analyzed using a higher-order Stern–Gerlach effect (bottom right). (c) Separating right circularly polarized (RCP) and left circularly polarized (LCP) beams using
periodic poling of the electro-optic coefficient, depending on the applied voltage. A horizontally polarized beam can be steered left or right depending on the applied voltage
(right). (d) Separating waveguide modes in an optically induced linearly varying coupling between two slab waveguides (left). The probe beam can be structured to allow
different input pseudospin states, thus changing the output mode structure and angle (right). Panels reproduced with permission from (a) Yesharim et al., Nat. Photonics 16,
582–587 (2022). Copyright 2022 Springer Nature; (b) Liu et al., Optica 11, 980–987 (2024). Copyright 2024 Optica Publishing Group;27 (c) Chen et al., Laser Photonics Rev.
18, 2301030 (2024). Copyright 2024 John Wiley and Sons; (d) Xu et al., Laser Photonics Rev. 18, 2301055 (2024). Copyright 2024 John Wiley and Sons.
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injected inside the photorefractive material. Depending on the rela-
tive phase of the excited waveguide modes, the output mode would
split (in the case of a superposition) or deflect (in the case of a single
spatial mode).

The Stern–Gerlach splitting was demonstrated not only in
the spatial/momentum domain but also in the temporal/frequency
domain. This was achieved by extending the demonstration of the
Stern–Gerlach effect in quadratic nonlinear optics25,26 to the third-
order nonlinearity in optical fibers, as described by Bashan et al.34

Using commercially available telecom components, the authors
mixed two pump pulses to induce coupling between the signal
and idler pulses via FWM. The pump envelopes were designed to
include a linear power ramp that overlapped with the signal and
idler pulses, thereby inducing a temporal slope in the synthetic

magnetism [see Fig. 3(a)]. Through coherent detection, the exper-
iment revealed that each system eigenstate [Eq. (6)] was deflected
in a different direction within the frequency domain, resulting in
eigenstate splitting that varied with the pump pulse power [see Figs.
3(b)-(d)]. In addition, for superposed states, frequency splitting and
Rabi oscillations were observed.

B. Pseudospin transverse localization of light
in a synthetically disordered nonlinear medium

The spin-glass, a fascinating disordered magnetic phase, fea-
tures randomly aligned spins due to frustrated interactions,35–38

resulting in complex magnetic behavior that intrigues multiple
scientific disciplines.35,37,39,40 While theoretical work on spin-glass

FIG. 3. Temporal Stern–Gerlach effect. (a) Illustration of the all-optical Stern–Gerlach effect in the time domain. Two pump tones within a shared ramped pulse envelope
(red) couple light between signal and idler pulses, resulting in two distinct eigenstates (blue and orange), where signal and idler exhibit either the same or opposite phases.
As the pulses propagate in the fiber, the eigenstates undergo temporal splitting (left) and frequency splitting (right). (b) Experimental and simulated results of the spectral
deflection of the eigenstates’ power spectral density. The horizontal axis represents the frequency offset from the carrier, with the signal on the left and the idler on the right.
Blue lines represent eigenstate ∣ψ

+
⟩ and red lines represent ∣ψ

−
⟩; solid lines are experimental results and dashed lines are simulations at 270 mW pump peak power, with

0.1 GHz eigenstate frequency offset. (c) As in (b), but with a 950 mW peak power and 0.55 GHz frequency offset. (d) Frequency splitting vs pump peak power, with the
solid blue line representing the theoretical model and red markers showing experimental data. Reproduced with permission from Bashan et al., Opt. Express 32, 9589–9601
(2024). Copyright 2024 Optica Publishing Group.34
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materials is extensive, experimental investigation of spin current
dynamics in these disordered textures has been challenging due
to stability issues,41,42 and the lack of the possibility for coherent
control.42

In such disordered systems, phenomena like weak
localization43,44 and Anderson localization45,46 are predicted
to occur. Anderson localization, in particular, is a widespread wave
phenomenon, where the diffusion of an electron wavefunction halts
in the presence of a disordered potential, causing the wavefunction
to become spatially localized with exponentially decaying tails.
Optics has provided a well-established platform for studying
localization, where experiments have pioneered the observation
of transverse Anderson localization in 2D47 and 1D48 photonic
systems, where light becomes localized in the transverse plane with
exponentially decaying tails,49–51 by introducing disordered scalar
potentials.

By utilizing the aforementioned analogy between an SFG pro-
cess and spin-1/2 dynamics, spin transport in a disordered spin-glass
phase was recently explored, revealing that the signal-idler light
beam, acting as the spin current, undergoes transverse localization
due to induced disorder in the synthetic magnetization texture.12,13

Under the assumption of a quasi-phase-matched process, a 2D
ordered ferromagnetic material, as illustrated in Fig. 4(a), can be

FIG. 4. (a) and (b) Illustrations of the magnetization textures of 2D ferromagnet
(a) and spin-glass (b) phases, with their optical analog schemes.12,13 Spin trans-
port in a ferromagnetic phase is equivalent to Gaussian pump and idler beams
impinging on a 1D NLPC, producing a diffracted pseudospin signal-idler beam.
This corresponds to a parabolic curve in logarithmic scale (white curve), as cal-
culated along the horizontal red dashed line. Spin transport in a spin-glass phase
can be optically emulated using two approaches: [(b), top] Gaussian pump and
idler beams impinge on a 3D NLPC with randomly sampled poling phase, or [(b),
bottom] a non-diffracting speckled pump with Gaussian idler beams impinging on
a 1D NLPC. Both approaches yield a localized pseudospin, as can be seen from
the ensemble-averaged output intensity ⟨I⟩, which is now transversely localized,
characterized by linear-shaped profiles on a logarithmic scale (white curves), as
calculated along the horizontal red dashed lines.

emulated by creating a uniform transverse synthetic magnetization
texture. This is optically achieved by employing a 1D periodically
poled crystal with a wide, non-depleted Gaussian pump beam.
Disorder in the synthetic magnetization texture, mimicking a 2D
disordered spin-glass phase, illustrated in Fig. 4(b), can be intro-
duced by shaping either the NLPC parameters or the pump field,
as shown in Fig. 4(b). The crystal shaping approach involves sam-
pling the poling phase from a uniform distribution within the range
[0, 2π]x × [0, 2π]y, while keeping the pump envelope’s phase con-
stant. The pump shaping method involves an all-optical realization
of a disordered synthetic transverse magnetization by employing a
non-diffracting (ND) speckled pattern as the pump field, a random,
propagation-invariant field distribution.

The results presented in Refs. 12 and 13 show that in
the optically ordered ferromagnet, a broad Gaussian signal-
idler beam emerges at the NLPC’s output, indicating dominant
diffraction effects. In this case, the intensity distribution follows

I ∝ exp(− 2r2
T

σ2 ), where rT = (x, y) is the transverse position vector

and σ denotes the Gaussian beam width, as illustrated in Fig. 4(a).
Conversely, when considering the pseudospin transport inside the
optical disordered spin-glass, the ensemble-averaged signal-idler
output intensity becomes localized in the transverse plane, as
shown in Fig. 4(b) (top) and (bottom) for the crystal and pump
shaping approaches, respectively. In this case, the optimally fitted
curve for the ensemble-averaged signal-idler output intensity pro-
file follows an exponential distribution, ⟨I⟩∝ exp (− 2∣rT ∣

ξloc
), where

∣rT ∣ =
√

x2 + y2 represents the transverse distance from the beam’s
center. The hallmark of localization is evident in the linear-shaped
profile on a logarithmic scale in the presence of synthetic disorder, in
contrast to the parabolic profile observed in the optical ferromagnet
case [white curves in Figs. 4(b) and 4(a), respectively].

These findings, which reveal intriguing properties of spin trans-
port in a disordered magnetic phase, may provide insights into
phenomena such as ferromagnetic-metal to glassy-insulator phase
transitions,52–54 while paving the way for exploring challenging phe-
nomena in traditional condensed matter systems. It also opens
avenues for discovering novel physical effects in complex magnetic
textures, such as spin-ice materials,41 by tailoring both the nonlin-
ear crystal and the pump beam. In addition, this framework can
be adapted to other nonlinear processes, such as difference fre-
quency generation,26 and third-order nonlinearity,4,8 and other two-
level systems,27,32,33 potentially uncovering additional intriguing
localization effects with light.

C. Skyrmionic nonlinear photonic crystals
and the topological Hall effect for light

In 2009, a new form of stable magnetic texture—the skyrmion-
ics lattice—was discovered.55 This texture consists of magnetic
whirl-lines that are topologically robust. When a spin-1/2 particle
interacts with the magnetic skyrmion, the topological Hall effect is
observed—the particle is deflected either to the left or to the right,
depending on the value of the spin. Magnetic skyrmions raised much
interest in the research community,56 and they were proposed for
applications such as memory storage and information processing.
Moreover, analogies of skyrmion lattices were realized in optics
in recent years,57 where the effective spin texture is formed using
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either the electric field components or the spin angular momentum
components of surface plasmon polaritons.58–60 Skyrmion beams
can also be formed for freely propagating beams, using either the
Stokes vector components of optical beams or the electron spin
components of electron beams.61 Furthermore, skyrmion lattices
were recently proposed62 and experimentally observed63 with sur-
face water waves. A recent review57 presents the latest developments
in the field of optical skyrmions and outlines several potential
applications.

As we have shown in the previous sections, the nonlinear mix-
ing process is analogous to the interaction of a spin-1/2 particle
with a magnetization texture, where the effective spinor consists
of the complex amplitudes of the signal and idler, and the prod-
uct of the nonlinear coefficient and the pump field is the effective
magnetization. This analogy opens the door to the realization of
skyrmionics nonlinear photonic crystals and to the emulation of the
topological Hall for light,14 whereby the signal-idler beam would be
deflected either to the left or to the right, depending on the relative
phase between the two waves. Owing to the flexibility of modulating
the nonlinearity in all three dimensions of the crystals using laser-
induced poling,64 complex skyrmionic structures can be formed.
Moreover, the interaction can be all-optically controlled using the
pump beam, enabling, for example, control over the direction of the
deflection of the signal-idler light beam.

The (normalized) circularly-symmetric space-dependent mag-
netization texture can be written as

M̂(ρ,ϕ) =
√

1 −m2(ρ)[cos (nϕ + η)x̂ + sin (nϕ + η)ŷ] +m(ρ)ẑ.
(8)

Here, ρ,ϕ are the radial and azimuthal polar coordinates. The
radial dependence is expressed using m(ρ) in the z direction and√

1 −m2(ρ) in the x–y plane, where 0 ≤ ∣m(ρ)∣ ≤ 1, n is the (inte-
ger) winding number, and η is a phase factor. To realize the effective
magnetization texture in a nonlinear photonic crystal, one needs to
vary the poling period and subsequently the phase mismatch (which
controls the size of the effective magnetization in the z direction),

as well as the duty cycle and phase that control the magnetization
in the x–y plane. In ferroelectric crystals, this requires modulating
the nonlinear coefficient in all three dimensions, which is possible
by laser-induced poling.64

Some interesting magnetization textures include Neel-type
skyrmions (or anti-skyrmions), where m(ρ) = ∓ cos ( πρR ), n = ±1,
η = 0:

M̂(ρ,ϕ) = sin(πρ
R
)[cos (nϕ)x̂ + sin (nϕ)ŷ] ∓ cos(πρ

R
)ẑ, (9)

and Bloch-type skyrmions (anti-skyrmions), where m(ρ)
= ∓ cos ( πρR ), n = ±1,η = π

2 :

M̂(ρ,ϕ) = sin(πρ
R
)[− sin (nϕ)x̂ + cos (nϕ)ŷ] ∓ cos(πρ

R
)ẑ. (10)

However, the flexibility of modulating the nonlinear coefficient
enables the realization of high-order skyrmions, having ∣n∣ > 1, and
considering other profiles of m(ρ), beyond the above-mentioned
cosine dependence on ρ, such as polynomial or exponential
functions of ρ12.

When a signal or idler light beam is sent through a nonlinear
photonic crystal, having an effective magnetization texture of any of
the above-mentioned types of skyrmions, it will exhibit a topological
Hall effect, that is, the output beam will be deflected in one direction
for the signal and in the opposite direction for the idler. Moreover,
as the skyrmion number increases, the deflection angle increases as
well. In terms of the propagation dynamics for an SFG process with
a non-depleted pump, under the adiabatic condition, the signal-idler
spinor will follow the local magnetization. Hence, as shown in Fig. 5,
a signal-only beam at the input will be fully converted to an idler-
only beam at the center of the skyrmion structure and will be fully
converted back to a signal-only beam at the exit plane.

As we discussed in the previous sections, the effective magneti-
zation is a product of the pump wave and the nonlinear modulation
of the crystal. So far, we considered the pump as a broad Gaus-
sian beam, but new opportunities emerge when the pump beam

FIG. 5. Dynamics of the pseudospin and position of the light beam as it traverses a synthetic magnetization texture. The propagation coordinate (z) is analogous to the
time coordinate, and the location of the light beam on the transverse plane is analogous to the position of the spin- 1

2
particle (axis inset), while the spin degree of freedom

is analogous to the color of the light (green/blue colors representing spin up/down). In a similar manner to the electron spin, adiabatically following the local magnetization
direction, light undergoes adiabatic frequency conversion [from green (signal) to blue (idler) and back to green (signal)] as it propagates. Reproduced with permission from
Karnieli et al., Nat. Commun. 12, 1092 (2021). Copyright 2021 Authors, under a Creative Commons license CC BY 4.0.
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is structured. Specifically, if we assume a pump beam that carries
orbital angular momentum (OAM), the nonlinear modulation pat-
tern becomes much simpler, hence easier to fabricate. In addition, by
switching the pump’s OAM from a positive value to a negative value,
the deflection angle in the topological Hall effect changes sign as
well, thus enabling all-optical control of the deflection.

At present, the concept of realizing skyrmion structures using
nonlinear photonic crystals has been theoretically and numerically
analyzed. An important future challenge is to experimentally real-
ize these structures and observe the corresponding topological Hall
effect for light. In addition, it would be interesting to study the non-
linear interaction in the regime of strong signal and idler beams,
where the non-depleted pump approximation no longer holds. It is
expected that this will reveal new propagation dynamics, similar to
spin-transfer torque,65 in which the magnetization is affected by the
spin current.

D. All-optical spin valve effect in nonlinear optics
The spin valve (SV), introduced in the early 1990s,66 is a fun-

damental spintronic device extensively utilized in magnetic sensors
and magneto-resistive random-access memory technology.67 The
SV consists of “free” and “fixed” ferromagnetic layers separated by
a non-magnetic metal layer, as illustrated in Fig. 6(a), and switches
between “open” state when the two layers have parallel (“P”) magne-
tization textures, supporting high electric current, and “closed” state
when the two layers are anti-parallel (“AP”), with no electric current
at all. This switching, based on the giant-magnetoresistance effect, is
achieved by applying an external magnetic field that alters the free
layer’s magnetization relative to the fixed layer.66

Leveraging the aforementioned analogy between spin transport
and nonlinear optics, an all-optical spin valve device was proposed
by Izhak et al.,15 where the signal-idler light beam in a quasi-
phase-matched SFG process serves as the spin current, and the
synthetic magnetization texture, which determines the device’s state,
is controlled optically by the pump beam. This configuration allows
precise manipulation of the propagation of the signal-idler beam,
influenced by the relative phase between the signal and idler fields
and by the pump beam’s power.

Assuming a quasi-phase-matched process where the synthetic
magnetization texture is purely transverse, to emulate the mag-
netization pattern of a spintronic spin valve, a discontinuity in
χ(2) (r) is introduced, effectively creating two synthetic ferromag-
netic layers. This is achieved through a specific poling pattern of

the NLPC, in which the poling phase is ϕNLPC(r) =
⎧⎪⎪⎨⎪⎪⎩

π, x < 0

0, x > 0
, as

depicted in Figs. 6(b) and 6(c), resulting in a synthetic magnetization

texture of the form MT(r) =
⎧⎪⎪⎨⎪⎪⎩

−M0 x̂, x < 0

+M0 x̂, x > 0
, that can be experi-

mentally realized by electric field poling in ferroelectric nonlinear
crystals.

The dynamics of the two-frequency signal-idler pseudospin in
this setup are governed by an eigenvalue problem, yielding two
orthogonal eigenstates, the frequency-superposition eigenstates ψ±,
defined in Eq. (6). In position-space representation, the evolution
of each eigenstate resembles a well-known wave phenomenon in
quantum mechanics and electromagnetics—scattering off a step
potential, with time evolution replaced by propagation along the
optical axis, z:

i
∂

∂z
ψ± =

⎡⎢⎢⎢⎢⎣
−∇

2
T

2k̄
∓
⎧⎪⎪⎨⎪⎪⎩

−M0, x < 0

+M0, x > 0

⎤⎥⎥⎥⎥⎦
ψ±. (11)

In this equation, the first term inside the parenthesis repre-
sents diffraction, while the second term acts as an effective poten-
tial. Specifically, ψ− encounters an effective step potential, while
ψ+ experiences an effective potential drop, both with a height of
2M0 controlled by the pump power, Ppump. By adjusting the pump
power properly, the device can be switched between two operational
modes.15

When the pump is off, the device operates in an “open” state,
allowing both ψ− and ψ+ to pass through the effective potential
with high transmission probability. This corresponds to a spintronic
spin valve device functioning in its “P” configuration, as depicted
in Fig. 6(b). Conversely, when the pump power reaches a specific

FIG. 6. (a) Illustration of a spintronic
SV. The valve is “open” when the fer-
romagnetic domains in the two layers
are parallel (“P”) and is “closed” when
they are anti-parallel (“AP”).15 (b) and
(c) Scheme for realizing an all-optical SV
using NLPC. For the spin-down eigen-
state as the input optical pseudospin,
ψin = ψ−, the operation of the device
is controlled via the pump power: when
Ppump = 0 W (Ppump = Popt), the all-
optical SV is in an “open” (b) [“closed”
(c)] mode and operates in an effective
“P” (“AP”) configuration, with full light
transmission (b) [reflection (c)] along the
z-axis of the NLPC.
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value, denoted as Popt and determined by the interaction parameters,
the device switches to a “closed” state. In this configuration, an inci-
dent pseudospin current in the state ψ− is totally reflected by the
effective step potential, emulating the operation of a spintronic spin
valve device in its “AP” configuration, as shown in Fig. 6(c). Further-
more, an incident pseudospin of state ψ+ is transmitted through the
device, enabling the routing of different pseudospin states based on
their frequency-superposition state.15

Another interesting all-optical device is the frequency-
superposition beamsplitter (FSBS), which is realized by introducing
two synthetic magnetization discontinuities. This device functions
similarly to a polarizing beamsplitter but operates on frequency-
superposition eigenstates, directing incoming light from one or
two spatial input ports to specific output ports based on their
frequency-superposition state.15

These all-optical devices are highly tunable and scalable, offer-
ing rapid optical control via the pump field and enabling fast
switching rates for applications such as optical switching. In addi-
tion, utilizing quasi-periodic nonlinear photonic crystals,68,69 these
concepts can be extended to higher dimensions, enhancing their
versatility in optical signal processing.

E. Pseudospin light guiding in nonlinear
photonic crystals

Optical waveguides, based on changes in the linear permittivity,
allow confinement and manipulation of light with optical wave-
lengths. By utilizing the aforementioned analogy, a new waveguide
phenomenon was recently introduced, which relies solely on the spa-
tial change of the nonlinear permittivity, using the corresponding
spin-1/2 dynamics of SFG in the second-order nonlinear optics.16,17

Specifically, it allows for exact manipulation of frequency superposi-
tion states in a compact and precise manner, all-optically controlled
by the pump beam.

In this work, under the quasi-phase-matched condition (Δk
= 0), Mz = 0, thus emulating the transverse synthetic magnetiza-
tion required for realizing simple changing magnetic domains, also

known as spin quantum wells.70 These dynamics can be described
by the following decoupled equations for SFG:

i
∂

∂z
ψ± = [−

∇2
T

2k̄
∓MT(r)]ψ±, (12)

where MT(r) =
⎧⎪⎪⎨⎪⎪⎩

M0 x̂, ∣x∣ < a
0, ∣x∣ > a

, with a denotes the pseudospin

waveguide width. Equation (12) resembles the dynamics of a quan-
tum particle in a potential well for ψ+, but for ψ−, it resembles a
particle in a potential barrier.

Therefore, a spin quantum well can be reached by trans-
versely varying the duty cycle (here switched between ∼0 and ∼M0),
switching between different magnetic domains. Namely, the anal-
ogy between spin quantum wells and optical waveguides is used to
confine light.

Figure 7(a) shows a schematic of the pseudospin waveguide
effect, where a strong wide pump shines on a narrow strip of the
quasi-phase-matched region. If a narrow idler (or signal) beam
focuses on the input facet, it will guide ψ+ and scatter (and diffract)
ψ−. Figure 7(b) shows a numerical simulation of such a device,
where a wide 1064.5 nm pump beam with a waist of 450 μm prop-
agates through the pseudospin waveguide. In addition, the device is
excited using a narrow (waist of 30 μm) 1550 nm idler beam. The
simulation shows the generated signal beam output facet. Clearly,
in the middle, the signal (of ψ+) is guided in the “X”-axis and
diffracted in the “Y”-axis. Next to it is the scattered and diffracted
eigenstate.

The results presented in Refs. 16 and 17 show that it is
possible to guide waves and build an integrated photonic compo-
nent without any change in the linear permittivity while borrow-
ing concepts from spintronics. In particular, spin-inspired wave-
guides bring maximal control to frequency superposition states,
which are otherwise extremely hard to manipulate due to dis-
persion. This may prove critical to advancing spectral domain
quantum optics. Moreover, the interaction can be all-optically

FIG. 7. (a) Schematic of the pseudospin waveguide.16,17 A narrow idler/signal beam (depicted by two blue/green Gaussians) enters the narrow-poled region, along with
a wide strong pump (red Gaussian). A narrow strip of the periodically poled region confines the pseudospin eigenstate, thereby acting as a channel waveguide for both
wavelengths with a specific relative phase. The dashed line illustrates regular diffraction of the input beams. (b) Simulation results of the signal output facet. Light in the
“X”-axis is confined, while freely propagating in the “Y”-axis. Next to the guided eigenstate is the scattered eigenstate.
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controlled by the pump beam, allowing us to envision modu-
lar spin-inspired waveguides for classical and quantum optical
processing.

IV. SUMMARY AND OUTLOOK
In this article, we reviewed a series of nonlinear optical effects

and devices that are inspired by the analogy between the propa-
gation dynamics in a nonlinear mixing process and spin currents
in various magnetization textures. The nonlinear processes that we
consider are either three-wave mixing in a quadratic nonlinear crys-
tal or FWM in optical fibers. The effects we discussed include the
optical Stern–Gerlach effect, the transverse localization of the signal-
idler beam in a disordered nonlinear crystal, and the topological Hall
effect for light in skyrmionic nonlinear photonic crystals. We also
discussed a new class of optical devices that enable splitting, switch-
ing, or guiding signal-idler superposition states, depending on their
relative phase.

We believe that there are many additional effects and devices
that can be studied. Let us briefly mention two future directions. In
our analysis, we assumed that the pump (or the two pumps) in the
χ(2) and χ(3) processes is non-depleted, so that the dynamics is that
of a two-mode system. However, when the signal and idler ampli-
tudes become comparable to that of the pump, this assumption is
no longer valid, and we reach the fully nonlinear regime where the
signal and idler waves will change the pump amplitude. This could
lead to a new family of all-optical devices inspired by other spin-
tronic phenomena, such as spin transfer torque,65 whereby the spin
currents alter the material magnetization.

While these effects require high-power signal and idler waves,
interesting opportunities also exist in the other extreme range of
power, in which these waves contain only single photons. For exam-
ple, when passing through the optical Stern–Gerlach device, the two
photons (one from the signal and one from the idler) will bunch and
emerge together in only one of the output ports of the device.71 This
is a manifestation of the Hong–Ou–Mandel (HOM) effect for dis-
tinguishable photons. Traditionally, the HOM bunching is observed
when indistinguishable photons interfere on a linear beam splitter,
but it has been shown that using a set of dichroic mirrors and a
nonlinear crystal, bunching can be observed for photons with differ-
ent frequencies.72–74 The Stern–Gerlach effect enables observation
of this effect in a single nonlinear crystal.71 Similarly, skyrmionic
nonlinear crystals enable the conversion of quantum entanglement
between path and spectral degrees of freedom.14 These methods are
not limited only to a pair of frequencies of the signal and idler,
and by using multiple pumps and quasiperiodic crystals, they can
be extended to multiple waves at different frequencies,71 thus open-
ing exciting possibilities for manipulation of quantum light in the
frequency domain.75

Whereas this paper concentrated on using nonlinear optical
processes for manipulating light beams, the underlying analogy of
spin-1/2 particles in magnetic fields is relevant to many other phys-
ical systems. Specifically, the polarization components of optical
beams,27–29,32 or alternatively the complex amplitudes of the elec-
tric field in coupled waveguides,33 can define a spinor that can be
manipulated by an analog magnetic field. This was already used
to show novel effects such as the Spin-Hall effect or the analog
Stern–Gerlach splitting, but it may be further applied to realize new

types of spin-dependent devices for guiding and splitting of light
waves.
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