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In spontaneous parametric down-conversion, the spectral correlations between the signal and the idler are
expressed by the joint spectral amplitude (JSA) function. However, in the standard coincidence measurements,
the phase information of the JSA is lost, and only the square of the absolute value of the JSA is recorded, thus
preventing full characterization of the biphoton state. Here, we present an experimental technique to investigate
the interference of biphoton joint spectral amplitudes, unlocking new avenues in quantum photonics research.
Our method explores phase-dependent phenomena within entangled biphoton spectra. This is achieved by simul-
taneously pumping two structured nonlinear photonic crystals and observing their interference, which reveals
previously inaccessible effects with direct intensity measurements. We demonstrate the versatility of our technique
by analyzing two types of joint spectra: one exhibiting a two-lobe shape and the other a three-lobe shape. Addition-
ally, we reconstruct the joint spectral amplitudes for both scenarios and observe good agreement with theoretical
predictions. These results pave the way for developing advanced quantum communication and information pro-
cessing technologies using biphoton spectra.
© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION
The essence of quantum optics and quantum information tech-
nologies [1] hinges on the superposition states of single photons
and the entangled states of photon pairs. Streamlining the cre-
ation and manipulation of these quantum states is crucial for
advancing secure quantum communications, quantum comput-
ing, and quantum sensors [2]. Using spontaneous parametric
down-conversion (SPDC) [3–5] as a promising method for state
generation involves tapping into nonlinear optical effects, which
have played a vital role in producing high-purity heralded single
photons, entangled photon pairs, and squeezed states [6].

Encoding information in the spectral degree of freedom of
photons [7–9] is often preferred in the pursuit of establish-
ing long-distance quantum communication links and scalable
quantum networks [10,11]. This approach presents various
advantages, such as the possibility for high-dimensional quan-
tum information representation (qudits), using a single spatial
channel, e.g., in single-mode optical fibers and waveguides.
Thus, more information can be encoded on a single photon,
improving the security of quantum key distribution protocols
[12,13].

The spectrum of photons generated using domain-engineered
nonlinear photonic crystals (NLPCs) has been studied over the
past decade [14–18]. These works align with our efforts to
manipulate and control the spectral properties of the outcome

of the SPDC process. The generated biphoton state is

|ψ⟩ =

∬
dωsdωiA(ωs,ωi)a†

h(ωs)a†

v(ωi)|0⟩, (1)

where a†

h(ωs) and a†
v(ωi) represent the creation operators into

the signal and idler modes, with horizontal and vertical polar-
izations, respectively. A(ωs,ωi) is the joint spectral amplitude
(JSA) of the two-photon field describing the amplitude of gen-
erating the signal and idler photons, and their correlations at the
respective frequencies ωs and ωi. Nevertheless, conventional
characterization methods often rely on coincidence measure-
ments which yield the joint spectral intensity (JSI = |JSA|2)
without accounting for phase information. Thus, it is hard to
distinguish between states that differ in phase by using the JSI
measurement.

Accurately measuring the JSA of photon pairs is a challeng-
ing task because it requires capturing both spectral amplitude
and phase information. While a spectrometer can measure the
spectral amplitude, determining the spectral phase is more com-
plicated and requires advanced techniques. There are methods
that involve self-referencing approaches using optical nonlinear
devices [19], but these are not suitable for single photons due to
their weak electric fields and introduce significant experimental
complexity and long data integration times. Another approach is
to interfere the unknown signal pulse with a well-characterized
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reference pulse and perform spectrally resolved detection, which
necessitates a precisely known and phase-stable reference pulse.

A previous work [20] demonstrated a scheme based on inten-
sity interferometry to measure the JSA of photon pairs produced
by SPDC. In this method, one of the down-converted photons is
sent directly into a spectrally resolving single-photon detector,
while the other heralded photon is combined with a reference
pulse in a single-mode fiber beam splitter. This setup requires a
motorized stage to set the delay between the two pulses. While
effective, this approach is intricate due to the necessity of the
reference pulse, which adds complexity to the measurement
process.

In another study [21], the authors explore techniques for
controlling the spectral properties of biphotons. They present
a method for manipulating the JSA of biphotons, enabling
a shaping method for biphoton wave packets. Their manip-
ulation effects are confirmed through JSI measurements and
Hong–Ou–Mandel (HOM) interference patterns.

A recent study [22] showed that by using spatially resolved
single-photon detection, the spatial structure of biphotons gen-
erated through SPDC could be inferred. The analysis in that
work focused on isolating the amplitude and phase compo-
nents of the pump and phase-matching contributions to the
two-photon states. The authors demonstrated that by applying
a phase retrieval algorithm, the free-space propagation of the
pump and phase-matching could be observed. This information
can then be used to reconstruct the full biphoton wavefunction,
providing a deeper understanding of the spatial properties of the
generated biphotons.

Here, we propose and demonstrate a novel approach to
exploring the interference between two biphoton JSAs, using
crystal-based interferometry in domain-engineered KTiOPO4

(KTP) NLPCs. This method provides a compact and robust
means to uncover the intricate interplay between quantum states,
complementing the investigation into NLPC-generated photon
spectra and opening avenues for new insights. By conducting
experimental validation and analysis, we showcase the adaptabil-
ity of our method in exploring four JSAs: two JSAs characterized
by a two-lobe configuration and the other two JSAs charac-
terized by a three-lobe configuration. We examine cases of
different JSAs that yield (almost) identical JSIs. Subsequently,
we interfere two JSAs and measure the resulting intensity, which
indicates their internal phase structure. Moreover, we show that
under specific conditions, the JSA can be reconstructed from
only two JSI measurements. We concentrate on the superposi-
tion of distinct JSAs with a relative phase, leading to interference
between the biphoton states and providing a complementary
approach to the spectral shaping techniques explored in [21].

2. THEORY
SPDC involves the interaction of three electromagnetic fields
within a nonlinear medium. During this process, a photon from
one mode (pump) is annihilated, resulting in the creation of
two photons in the other two modes (signal and idler). The
process complies with the conservation of energy ωp = ωs +

ωi and momentum ∆k′(ωs + ωi) = kp(ωs + ωi) − ks(ωs) − ki(ωi),
whereωp,ωs,ωi are the angular frequencies of the pump, signal,
and idler; kp, ks, ki are the corresponding wavevectors; and ∆k′ is
the wavevector mismatch that can be compensated using a quasi-
phase-matching technique. In this technique, a poling period,Λ,
is introduced and chosen to satisfy ∆k′ = ±2πm/Λ, where m is

the order of quasi-phase-matching. Now we can define

∆k(ωs,ωi) = kp(ωs + ωi) − ks(ωs) − ki(ωi) ±
2πm
Λ

. (2)

In the low-gain regime, characterized by κ = ωχ(2)EpL/cn<1
(where χ(2) represents the susceptibility, Ep denotes the pump
field, L is the crystal length, and n is the refractive index) [16],
the JSA can be expressed as the product of the pump’s spec-
tral distribution, P(ωs + ωi), and the phase-matching function
(PMF), Φ(∆k(ωs,ωi)), depicted as

A(ωs,ωi) = P(ωs + ωi) · Φ(∆k(ωs,ωi)). (3)

The PMF is a Fourier transform of the crystal’s poling function
[23], and in general, it can be written as

Φ(∆k(ωs,ωi)) = χ(2)
∫ ∞

−∞

d(z) ei∆k(ωs ,ωi)z dz, (4)

where d(z) is the poling function describing the sign of the
susceptibility as a function of the longitudinal coordinate z.
The PMF can be arbitrarily shaped using a simple analytical
formula: by taking the Fourier transform of the desired PMF
and normalizing it, u(z), we can design the nonlinear crystal as
follows [23,24]:

dj(z) = sign
[︃
cos

(︃
2π
Λ

z + φj(z)
)︃
− cos(πqj(z))

]︃
, (5)

where q(z) = arcsin(|u(z)|)/π and φ is the phase of u(z). This
scheme enables to shape the PMF by varying the duty cycle
and phase of the (binary) nonlinear modulation. For the case we
consider here, of nearly degenerate type II SPDC near 1560 nm,
the shaping of the PMF alters the JSA along the anti-diagonal
axis. In this work, we used four different crystal designs, dj(z),
where j = 1, 2, 3, 4. Two designs exhibit a two-lobe shape, while
the others exhibit a three-lobe shape. Specifics about the NLPCs
are provided in Table 1. In this study, we assume plane wave
interaction because the length of the NLPCs (L = 4 mm) is much
smaller than the confocal parameter of 72 mm.

2.1. Crystal-Based Interferometry

Our research explores using two NLPCs arranged consecutively
or in parallel within the SPDC process. While previous studies
have primarily focused on generating polarization entanglement
[25–27] or spatial entanglement [28] using this configuration,
our work investigates the potential for manipulating and con-
trolling the spectral entanglement of the generated photon pairs.
Figure 1 illustrates the principle of crystal-based interferome-
try. Our research concentrates on investigating the interference
phenomenon between two JSAs. Leveraging this interference,
we manipulate the JSI while also providing means to dif-
ferentiate between two JSAs possessing identical JSIs with
different phase dependencies through intensity measurements.
This approach enables the acquisition of phase information with-
out constructing a standard interferometer, achieved instead by
concurrently passing through two domain-engineered NLPCs.
Without employing crystal-based interferometry, interfering
two SPDC sources typically necessitates constructing a larger
and more intricate setup. This conventional approach involves
numerous optical elements and an interferometer’s precise align-
ment. The complexity of this setup increases with the need
for high stability, making it challenging to maintain over time.
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Table 1. Detailed table of the Hermite–Gaussian, 2-Gaussian, and 3-Gaussian Designs, Providing Φ(∆k (ωs,ωi ))
a

aFigures show the phase-matching function versus ∆k (which is given in Eq. (4)).For all the crystals, the crystal length is 4 mm, and the poling period is
46µm. The values of the parameters in the table are: σ1 = 2 × 103[1/m], σ2 = 1.5 × 103[1/m], σ3 = 1 × 103[1/m], a = 2 × 103[1/m], b = 5 × 103[1/m].

Fig. 1. Simulation results that show the crystal-based interferometry method. (a) Left-hand side demonstrates the interference of two JSAs
(JSA1,2) with a relative phase between them (∆ϕ). Right-hand side depicts the resulting total JSI after the interference for two choices of
the relative phase ∆ϕ = 0, π. (b) The two JSAs are created by pumping specialized NLPCs with ∆k1,2 phase-matching functions. This figure
showcases our crystal-based interferometry method and, as an example, the generation of Hermite–Gauss of order 1- (HG1) and 2-Gaussian
spectra.

In contrast, crystal-based interferometry simplifies the process
by using domain-engineered NLPCs to achieve the interfer-
ence directly, thereby reducing the need for a complex optical
arrangement.

An illustration of the experimental setup for observing SPDC
in engineered NLPCs is shown in Fig. 2. The setup includes
a tunable pulsed titanium-sapphire (Ti:Sa) laser as the pump
source with a pulse duration of 90 fs, a pulse repetition rate of
76 MHz, and a spectral width of approximately 7 nm (FWHM).
The central wavelength λp0 was adjusted to 780 nm. The pump
is focused into the engineered NLPCs with a waist of approxi-
mately 100µm, where type II SPDC occurs and is then filtered
out using a long-pass filter with a cut-off wavelength of 950 nm.
Photon pairs generated inside the crystals are split into two
arms by a polarizing beam splitter, coupled into single-mode
fibers, and detected by superconducting nanowire single-photon
detectors (SNSPDs) with a detection efficiency of ∼ 95% at
1560 nm.

To measure the JSI of generated photons, we applied time-of-
flight spectroscopy [29]. Using a 10-km SMF-28 optical fiber in
both signal and idler photon arms, we achieved a spectral delay
of 180 ps/nm. Comparing correlated photon arrival times with
a reference clock allowed us to reconstruct the JSI for different
positions of the kinematic stage (KS2 in Fig. 2(a)).

The resolution of our time-of-flight measurement setup is
primarily determined by the total timing jitter, which includes
contributions from the SNSPDs, the time-tagger, and the clock
photodiode. Specifically, the timing jitter of the time-tagger
(Swabian Ultra) is 140 ps, the SNSPDs (Scontel) have a jitter of
40 ps, and the photodiode used for the clock contributes approxi-
mately 35 ps, all expressed as FWHM. By combining the timing
jitter values of all components in quadrature, we estimated the
overall temporal resolution to be approximately 150 ps.

Crystal-based interferometry has some similarities to the
double-slit experiment but uses two detectors for biphoton
coincidence measurement, as illustrated in Fig. 2(b). The quan-
tum states (|ψ1,2⟩) are split by polarization, sending the signal
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Fig. 2. (a) Experimental setup. A Ti:Sa pump pulse passes through a KTP nonlinear crystal, generating a correlated photon pair. The
entangled photon pair (signal and idler) undergoes polarization-based splitting, with each routed through a 10-km SMF-28 fiber and detected
individually by single-photon detectors. Arrival times are measured using a time tagger. Key components: F, filter; PBS, polarizing beam
splitter; KS, fiber coupling kinematic stage; L, lens; D, detector. (b) Illustration of crystal-based interferometry. This method is similar to
the double-slit experiment but with two detectors measuring the biphoton amplitude. Each of the two quantum states (|ψ1,2⟩) is split by
polarization using a PBS (see panel (a)), directing the signal and idler to detectors D1 and D2, respectively, for individual detection. D1, which
detects the signal photons from both quantum states, has a fixed position. The position is chosen so that l′2 − l′1 = 2mπ/λ for m ∈ N. D2, which
detects the idler, moves along the x-axis, and several measurements are taken. In each measurement, the phase between the idler photons
changes according to the path difference l2(x) − l1(x). (c) Phase-matching functions (PMFs): top, HG1; bottom, two Gaussians. These PMFs
correspond to the crystal patterns shown in panel (a).

and idler photons to detectors D1 and D2. D1, fixed in position,
detects signal photons. D2 detects the idler photons and moves
along the x-axis, altering the phase between idler photons gener-
ated from each crystal based on the path difference l2(xi) − l1(xi),
where l1(xi) and l2(xi) are the path lengths for the idler photons
generated in the first and second crystal, respectively. Here, xi

is the generalized coordinate of the stage, corresponding to the
transverse movement relative to the incident beam.

For a general case of |ψ1,2⟩, the overall state is a superposition
of both JSAs, incorporating a relative phase between them. This
can be expressed as

|ψ⟩ =
1
√

2
(︁
|ψ1⟩ + ei∆φ(xs ,xi) |ψ2⟩

)︁
. (6)

Here, ∆ϕ(xs, xi) ≡ ∆ϕ represents the relative phase resulting
from the position of the stages that couple light into the fibers
(designated by kinematic states (KS) in Fig. 2(a)), thereby alter-
ing the relative path length difference between the signal (idler)
photons, generated from different NLPCs. It can be seen that
adjusting ∆ϕ can change the measured output JSI and provide
insights into the initial relative phases of the designed JSAs. The
phase between the signal photons generated in different crystals
is fixed, so the relative phase (∆ϕ, Eq. (6)) between the quantum
states |ψ1,2⟩ is determined solely by the phase between the idler
photons.

We can express the measured JSI for a given relative phase
as the absolute square of the sum of the JSAs with the

relative phase between them. By considering the interference
between two JSAs, with relative phases ∆ϕ = α,α + π (where
α is a general phase), the measured JSI can be formulated as
follows:

JSIint(∆ϕ = α) =
|︁|︁JSA1 + eiαJSA2

|︁|︁2
= JSI1 + JSI2 + 2 cos (α) · JSA1 · JSA2,

JSIint(∆ϕ = α + π) =
|︁|︁JSA1 + ei(α+π)JSA2

|︁|︁2
= JSI1 + JSI2 − 2 cos (α) · JSA1 · JSA2.

(7)
These equations represent matrices, and each element in these
matrices can be treated individually. By performing element-
wise operations, we can subtract or multiply corresponding
elements from one matrix with those of another. This approach
allows us to compute the difference between the measured JSIs
for different phases, leading to

JSIint(∆ϕ = α) − JSIint(∆ϕ = α + π) = 4 cos (α) · JSA1 · JSA2.
(8)

We observe that the difference between JSIs for phases α and
α + π is directly proportional to the product of the JSAs of the
two NLPCs. The cosine function modulates this proportionality.
Our method can be used for any phase α that gives cos(α) ≠ 0.
However, when cos(α) = 0, the JSI difference becomes zero,
meaning we cannot reconstruct JSA2 based on this metric alone.
In such cases, we can simply change our initial phase, α, by
moving the KS.
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We assume α = 0, which simplifies the equation, and we con-
sider JSA1 as a known reference, allowing us to reconstruct
JSA2 based on the observed JSI difference directly. However,
this reconstruction has a limitation: since we need to divide by
JSA1, it relies on the assumption that JSA1 is non-zero. To prove
our method, we selected reference crystals having a similar JSI
to the JSI of the unknown crystal. In this case, the above limita-
tion of having non-zero values is not a problem. However, any
reference crystal with a known JSA and with non-zero values in
the spectral region of interest can be used to fully reconstruct
the unknown crystal’s JSA.

3. RESULTS
3.1. Double-Lobe Engineered NLPCs

We analyze a case in which the JSA of one of the two crystals
corresponds to HG1, exhibiting two lobes with opposite phases
(Fig. 2(c), top) as a reference, and we used in parallel another
crystal in which the JSA is composed of two shifted Gaussian
functions that are in phase with each other (Fig. 2(c), bottom).
These two different quantum JSAs are produced by employ-
ing two distinct engineered NLPCs via electric field poling on
a KTP. The crystals were designed by us and fabricated by
Raicol Crystals based on our specifications. The design is based
on a variation of the duty cycle of the nonlinear modulation
[23]. The length of the NLPC was 4 mm and the poling period
was 46µm. When the pump pulse traverses both engineered
NLPCs simultaneously (as depicted in Fig. 2(a)), it results in a
superposition of two distinct output states that would have been
individually obtained from each of the NLPCs. Specifically,
|ψ1,2⟩ =

1
√

2

(︁|︁|︁ω1s ,ω2i

⟩︁
∓
|︁|︁ω2s ,ω1i

⟩︁)︁
for each design. The overall

state is

|ψ⟩ =
1
√

2
(︁
|ψ1⟩ + ei∆φ |ψ2⟩

)︁
=

1
2
(︁
(1 + ei∆φ)

|︁|︁ω1s ,ω2i

⟩︁
+ (1 − ei∆φ)

|︁|︁ω2s ,ω1i

⟩︁)︁
.

(9)

We generated the entangled photon pair and measured the JSI for
different positions of one of the kinematic stages. The measured
JSI for three different positions of the stage (KS2) is shown
in Fig. 3. The three positions of the stage correspond to three
different phase differences ∆ϕ = 0, π/2, π (Fig. 3(a)). Changing
the relative phase to∆ϕ = 0, π will result in only one of the lobes
(Fig. 3(a)1,3). In the case of a relative phase of ∆ϕ = π/2, the
intensity of the two lobes will be equal (Fig. 3(a)2). Figure 3(b)
shows the anti-diagonal cross-section of the JSI measured at
various positions of the stage (KS2). These results demonstrate
an easy transition between different JSIs, which can be useful
for quantum information applications.

Fig. 3. Interference between NLPCs with two lobes. (a) Measured JSIs for different positions of KS2. (b) Measurements of the wavelength
difference between the signal and idler for different positions of KS2.

Fig. 4. Comparison between the theoretical and the reconstructed
JSA of the two-lobes NLPC design (see Table 1, second line). The
left panel shows the theoretically predicted JSA, while the right
panel presents the reconstructed JSA obtained from experimental
data. The overlapping integral between the reconstructed and the
theoretical JSA is 0.90, demonstrating a high degree of similarity
between the experimental results and theoretical predictions.

By using Eqs. (7) and (8), and incorporating the measurements
shown in Fig. 3, we reconstructed the JSA of the double-
lobe, in-phase NLPC (see Fig. 4). This reconstruction process
involves applying the measured JSIs, using the phase informa-
tion obtained from the experimental setup, and assuming the
reference JSA is known. The resulting JSA accurately represents
the spectral correlations between photon pairs generated in the
SPDC process. The overlap integral between theory and exper-
iment is 0.90, confirming the crystal’s expected double-lobe
structure and in-phase behavior.

3.2. Three-Lobe Engineered NLPCs

Additionally, we explore another scenario employing the same
concept but with different NLPCs. Here, the two engineered
NLPCs exhibit a three-lobe shape, as illustrated in Fig. 5(a),
with their corresponding PMFs and measured JSI depicted
in Figs. 5(b) and 5(c), respectively. The overlapping integrals
between the experimental results (Fig. 5(c)) and the theoretical
JSIs are 0.97 and 0.95 for the top and bottom crystals, respec-
tively. Specifically for each of the designs, the output state can
be written as

|ψ1,2⟩
3−lobes =

1
√

3
(︁
∓
|︁|︁ω1s ,ω3i

⟩︁
+
|︁|︁ω2s ,ω2i

⟩︁
−
|︁|︁ω3s ,ω1i

⟩︁)︁
, (10)

and the overall state is

|ψ⟩3−lobes =
1
√

2
(︁
|ψ1⟩

3−lobes + ei∆φ |ψ2⟩
3−lobes)︁

=
1
√

6
(︁
(ei∆φ − 1)

|︁|︁ω1s ,ω3i

⟩︁
+ (1 + ei∆φ)

|︁|︁ω2s ,ω2i

⟩︁
−(1 + ei∆φ)

|︁|︁ω3s ,ω1i

⟩︁)︁
.

(11)
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Fig. 5. Interference between crystals having three lobes. (a) The poling pattern of the NLPCs. (b) The phase-matching functions for the
upper and lower crystals. (c) JSI measurements of each engineered NLPC operating individually. (d) The JSI measurement of the spectrum
resulting from pumping the two NLPCs, for two different positions of the stage (KS2), with corresponding relative phase of 0 and π.
Additionally, panel (e) showcases measurements of the marginal spectral distribution as a function of the wavelength difference between the
signal and idler for different positions of KS2.

Fig. 6. Comparison between the theoretical and the reconstructed
JSA of the three-lobes NLPC design (see Table 1, bottom line).
The left panel shows the theoretically predicted JSA, while the right
panel presents the reconstructed JSA obtained from experimental
data. The overlapping integral between the reconstructed and the
theoretical JSA is 0.86.

We produced an entangled photon pair and examined the JSI
for different configurations of one of the coupling stages. The JSI
measurements for two distinct positions of the stage (KS2) are
illustrated in Fig. 5(d). These positions correspond to two dis-
tinct phase differences, ∆ϕ = 0, π. Adjusting the relative phase
to ∆ϕ = π results in two lobes nearly disappearing. Conversely,
in the absence of a relative phase (∆ϕ = 0), the JSI takes on
a complementary form, featuring prominent two lobes and the
near absence of the other lobe. In Fig. 5(e), the wavelength dif-
ference between the signal and idler, representing their temporal
delay, is depicted. This measurement was conducted at various
positions of the stage (KS2).

By employing Eqs. (7) and (8) and using the data presented
in Fig. 5(d), we obtained the JSA for the three-lobe configura-
tion NLPC (see Fig. 6). This reconstruction uses the measured
JSIs and assumes the reference JSA is known. The reconstructed
JSA reveals the spectral correlations between the photon pairs
produced by the SPDC process, aligning with the crystal’s antic-
ipated three-lobe structure and phase properties. The overlap
integral between theory and experiment is 0.86.

4. CONCLUSIONS AND DISCUSSION
In this paper, we introduce an interferometric measurement
method using engineered NLPCs to facilitate crystal-based inter-
ferometry. This approach enables the reconstruction of the JSA,
as demonstrated in our experiments for two NLPCs. This method
addresses the limitations of JSI in conventional coincidence

measurements, particularly the absence of phase information.
Our findings demonstrate the feasibility of extracting phase
information from crystal-based interferometry.

The implications of our work extend beyond immediate
advancements in JSI analysis. By interfering biphoton JSAs, this
methodology opens doors to more nuanced investigations into
quantum phenomena and facilitates the development of novel
quantum technologies.

Future research can further enhance this method by addressing
factors such as scalability and efficiency to bolster its practical
applicability. Additionally, exploring alternative crystal con-
figurations and refining experimental techniques could further
enhance the performance and versatility of our methodology.
Specifically, one can achieve a more thorough phase analysis
by designing an NLPC with a wide rectangular PMF shape and
implementing it in our setup as the reference arm. The pro-
posed design overcomes the limitation of JSA reconstruction
confined to areas with non-zero reference JSA. We can signif-
icantly broaden the range of JSA reconstruction using a wide
reference JSA. This setup allows us to extract the JSA of the
sample arm effectively. Consequently, our method can be used
for straightforward JSA measurement.

Traditionally, obtaining phase information between proba-
bility amplitudes of different frequencies requires interference
between these amplitudes, typically involving complex and inef-
ficient nonlinear processes. However, our method allows us to
gain phase information without resorting to such nonlinear pro-
cesses, simplifying the procedure significantly. Furthermore,
employing our interferometry method is simpler than construct-
ing a standard interferometer, thus offering a more accessible
approach to quantum state analysis. This potential application
opens new avenues for manipulating and analyzing quantum
states more efficiently.

In addition, this method can give many different JSIs (for
example, left lobe, two lobes, and right lobe, as shown in
Fig. 3(a)) with a small movement of a stage. While our method
provides control over the JSI at the measurement stage, it is
important to note that the generation process itself remains fixed.
This could be useful for applications that require a transition
between quantum states of light. Those transitions between
different JSIs can also be regarded as rotations in a two-qubit
Hilbert space defined by the lobes’ center frequencies for each of
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the two photons. These avenues of investigation hold promise for
continued advancements in quantum state analysis and quantum
information processing.

Our proposed method, based on crystal-based interferometry,
shares similarities with traditional phase-shifting interferometry
techniques [30], used to reconstruct the phase front of light
beams that pass through optical elements. This suggests that
our formulation can be extended to incorporate known phase-
shifting interferometry methods, potentially offering additional
insights and applications. By exploring these connections, we
can leverage the strengths of both approaches to enhance the
capabilities of quantum state characterization.
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