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ABSTRACT

Quantum states of light, such as fixed photon number (Fock) states, entangled states, and squeezed states, offer important advantages with
respect to classical states of light, such as coherent states and thermal states, in different areas: they enable secure communication and
distribution of encryption keys, enable realization of sensors with higher sensitivity and resolution, and are considered candidates for
quantum computing and simulation applications. To accommodate these applications, suitable methods for generating the quantum states
are needed. Today, the quantum states are often produced by a spontaneous nonlinear process in a standard nonlinear material, followed by
a series of optical elements necessary for encoding the desired state on the generated photons. In this review, we consider an alternative
approach of structuring the nonlinearity of the crystal so that the desired quantum state will be generated directly at the crystal, without the
need for additional elements. Our main focus here is on bulk crystals having structured second-order nonlinearity. The rising interest in these
nonlinear metamaterials is fueled by advancements in the ability to efficiently simulate and design spontaneous parametric downconversion
(SPDC) processes, as well as by new capabilities of structuring the nonlinearity of ferroelectric crystals, either by electric field poling or by
laser-induced writing. As a result, nonlinear metamaterials were recently used to directly shape the spatial and spectral correlations of quan-
tum light that is generated in SPDC. The paper covers the theoretical background and the design and fabrication methods of bulk nonlinear
metamaterials for generating quantum light, as well as a series of demonstrations of the use of metamaterials in quantum optical applications.
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International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0216714

TABLE OF CONTENTS
I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II. THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . 3
III. PHASE MATCHING CONSIDERATIONS AND

FABRICATION METHODS. . . . . . . . . . . . . . . . . . . . . . . . 5
A. Birefringent phase matching and quasi-phase-

matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B. Modulation of the nonlinear coefficient and

electric field poling . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
C. 3D laser-induced poling . . . . . . . . . . . . . . . . . . . . . . . 6
D. Waveguides and metasurfaces. . . . . . . . . . . . . . . . . . 6

IV. SIMULATING SPDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
A. Spatial domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B. Spectral domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
C. Inverse design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

V. APPLICATIONS OF QUANTUM LIGHT
GENERATED BY SHAPED LIGHT AND
STRUCTURED CRYSTALS . . . . . . . . . . . . . . . . . . . . . . . . . 10

A. Spatial domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

B. Spectral domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
C. Hyperentanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

VI. SUMMARY AND OUTLOOK. . . . . . . . . . . . . . . . . . . . . . 12

I. INTRODUCTION

The nonlinear process of spontaneous parametric downconver-
sion (SPDC) is a key method for generating different types of quantum
light. Typically, a strong pump source, with frequency and wave vector

xp; ~kp is sent to a nonlinear crystal, where it can be spontaneously split
into two photons, called signal and idler, with corresponding frequen-

cies xs;xi and wavevectors ~ks ; ~ki . For an efficient process, energy con-

servation (xp ¼ xs þ xi) and momentum conservation (~kp ¼ ~ks
þ~ki þ ~kc ) need to be satisfied, where ~kc is a possible contribution to
the momentum by the nonlinear crystal.

There are several interesting types of quantum light that can be
generated by SPDC, including heralded single photon generation, gen-
eration of fixed photon number (Fock) states, generation of entangled
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bi-photon states, and generation of single-mode and two-mode
squeezed light, see Fig. 1. In the case of heralded single-photon genera-
tion, one of the photons (say the idler photon) is detected, thus herald-
ing the presence of the single photon (the signal) in a different path,
see Fig. 1(b). Another option is to use the correlation between the two
photons in order to obtain an entangled source. The entanglement can
be in many possible degrees of freedom (DOF) of the light, such as
polarization, path, spectrum, time, shape, and orbital angular momen-
tum (OAM), see Fig. 1(a). Higher nonlinear coupling, which can be
reached, for example, by increasing the pump power or inserting the
nonlinear crystal into a resonant cavity, would lead to the generation
of squeezed light, see Fig. 1(c).

Let us consider as an example a polarization entangled source,
which can be expressed as1

jwi ¼ ðjHaVbi þ ei/jVaHbiÞ=
ffiffiffi
2

p
: (1)

This means we have two photons in two paths, labeled “a” and “b.”
The SPDC state is a superposition of two possibilities—an H-polarized
photon in path “a” and a V-polarized photon in path “b,” or vice versa.
The intriguing property of this state is that it is sufficient to perform a
polarization measurement on only one of the two photons in order to
determine the polarization of the second photon. This property holds
even if the two photons are very far apart. As an example, if the result
of the measurement is that the photon in path “a” is V-polarized, it
means that the photon in path “b” must be H-polarized. In addition,
depending on / (i.e., 0 or p), jwi represents two different Bell states,
which are key resources in various quantum information protocols.

In order to generate polarization-entangled photons, a type II
nonlinear process is typically used. In this process, the generated signal
and idler have orthogonal polarization. As an example, birefringent
phase matching can be employed in the nonlinear crystal beta barium
borate (BBO), where the specific choice of the crystal cut and the inter-
acting wavelengths leads to the generation of two emission cones, one
for the H polarization and the other for the V polarization.2 These two
cones intersect at two points, so that if the light is collected only from
these two intersection points, we obtain the desired polarization entan-
glement. Hence, the generation of polarization-entangled photons can
be achieved by clever choice of standard nonlinear crystals and optical
configuration. However, the polarization degree of freedom spans only
a two-dimensional Hilbert space. Hence, there is a desire to utilize

other degrees of freedom of light, such as spatial or spectral shape,
allowing for higher-dimensional operations. The higher dimensionality
provides several important advantages, such as the ability to transmit
more information on a single photon [ log 2ðdÞ bit per photon for a
d � dimensional qudit, vs 1 bit photon for two� dimensional qubit]
and improved security in quantum key distribution systems.3,4

However, in the case of high-dimensional states, it is much more diffi-
cult to generate the desired state directly, and it usually requires two
steps. First, signal and idler photons are generated, and then an optical
setup encodes the desired information. It should be emphasized that
information encoding is a separate step that requires additional optical
elements, such as lenses, filters, beam-splitters, and passive or active
masks, before or after the nonlinear crystal.

In this review paper, we discuss another possibility of encoding
the desired information into the nonlinear crystal that generates the
quantum light. Rather than using a standard nonlinear crystal,
together with an optical setup with multiple elements before or after
the crystal, we consider functional crystals whereby the nonlinear coef-
ficient is modulated to directly generate the desired quantum states.
The crystal, thus, serves as a quantum nonlinear metamaterial so that
when it is illuminated by a pump beam, the signal and idler beams
with desired spectral and\or spatial correlations will be generated (see
Fig. 2). In this sense, the entire optical setup that is required to generate
the desired quantum source is replaced by a single nonlinear metama-
terial. The realization of these nonlinear metamaterials require several
key ingredients: (i) The use of efficient SPDC simulators and machine
learning tools for engineering the generation of the different quantum
states5,6 and (ii) new capabilities of shaping the nonlinear coefficient,
based on laser-induced poling7–9 and on advancements in electric field
poling.10 While this ability is mainly used nowadays for periodic mod-
ulation, in order to satisfy the momentum conservation condition by
quasi-phase-matching, it is possible to go beyond this standard modu-
lation and vary the modulation period, the duty cycle, and the phase of
the modulation pattern along the crystal. In fact, structured nonlinear
crystals have already been used for more than a decade for spatial11–16

and spectral17,18 shaping of light beams in classical nonlinear interac-
tions. Here, we will show that structured nonlinear crystals can also be
used in SPDC processes in order to shape the correlations between the
signal and idler waves. This review can interest any researcher who
uses quantum light, with the intent of familiarize the optics

FIG. 1. (a) Examples of entanglement cre-
ated in a type II SPDC process using
structured NLPCs. (b) Generation of a
heralding signal that indicates the suc-
cessful occurrence of a quantum event.
Heralding involves the detection of one
photon (heralded photon) to signal the
presence of its entangled partner in a spe-
cific state. PBS, polarizing beam splitter, H
and V mark the different polarization direc-
tions. (c) Squeezed light is generated by
propagating a strong pump field through
the NLPC. The phase dependent squeez-
ing can be revealed by interfering it with a
coherent state jai, which serves as a
local oscillator. BS, beam splitter.
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community to the versatile use of spatially engineered bulk nonlinear
media for quantum light generation. We give special emphasis on the
design of the aforementioned nonlinear structures, with a brief over-
view of current state of the art fabrication process.

The structure of the paper is as follows: In Sec. II, we derive the
evolution of the signal and idler states under the nonlinear
Hamiltonian. In Sec. III, we discuss phase matching options, based on
crystal birefringence or quasi-phase-matching, as well as fabrication
methods to realize the latter, using electric field poling or laser-induced
poling. We also briefly review the status of waveguides and metasurfa-
ces for generation of quantum light. Simulation of SPDC, either in the
spatial domain or in the spectral domain is discussed in Sec. IV. This
section also discusses inverse solving methods. Section V covers appli-
cations of quantum light, generated by structured crystals as well as
shaped pump beams. Finally, Sec. VI summarizes this review and
presents outlook for future studies.

II. THEORETICAL BACKGROUND

This section will review the theoretical background in order to
evaluate SPDC’s quantum light properties. We start with the nonlinear
Hamiltonian of the following form:19,20

ĤðtÞ ¼ e0

ð
V
dVvð2ÞðrÞEpðt; rÞÊ�

i ðt; rÞÊ
�
s ðt; rÞ þ h:c :; (2)

where e0 is the vacuum permittivity, vð2Þ is the nonlinear second-order
susceptibility coefficient, V is the interaction volume, Ep is the unde-
pleted pump field, and Ê

�
i=s is the quantized electric field operator of

the signal and idler photons. Here, we mainly focus on nearly transpar-
ent dielectric materials, i.e., at optical frequencies that are far from any
electronic resonance of the crystal. In this case, the material nonlinear-
ity in non-centro-symmetric materials can be either modeled as a clas-
sical anharmonic oscillator, or using semi-classical quantum
mechanical perturbation theory.21 Since the pump, signal, and idler

electric fields are three-dimensional vectors, the second-order order
susceptibility tensor includes 3� 3� 3 ¼ 27 elements, but by using
symmetry properties,21 it can be represented in a contracted notation
using only 3� 6 ¼ 18 elements. Moreover, in a typical nonlinear
interaction, only a certain specific setting of the polarizations of the
three interacting fields provides phase matching; hence, only one of
these 18 elements may need to be used. We note that in previous treat-
ments,19 the nonlinearity is space independent and can be written out-
side the integral of Eq. (2). However, these treatments neglect the
spatial dependence of the nonlinearity, which allows engineering the
signal and idler correlations in various degrees of freedom. Classical
fields are defined as follows (for the pump field):19,20

Ep t; rð Þ ¼ ep

ð2pÞ3=2
ð
dxdqEpðx; q; zÞexp ikpzz þ iq � r? � ixt

� �
;

(3)

where r? is the transverse coordinate, q is the transverse wave vectors,
x is the field’s angular frequency, Epðx; qÞ is the spatial mode in
transverse coordinates, kpz is the wave vector component in the “z”
direction, and ep is the polarization vector of the pump field.
Quantized fields are defined similarly as19,20

Êi t; rð Þ ¼ iei

ð2pÞ3=2
ð
dxdqf ðxÞâiðx; q; zÞexp ikizz þ iq � r? � ixtð Þ;

(4)

where â is the annihilation operator, and f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hx=2e0cniðxÞ

p
.

For each of the waves, the dispersion relation sets the relation between
the wavevector and angular frequency, jqj2 þ k2z ¼ n2x2=c2. In the
Schr€odinger picture, the signal and idler state at time t can be written as

jWðtÞi ¼ exp � i
�h

ðt
0
Ĥ t0ð Þdt0

" #
j0isj0ii: (5)

FIG. 2. Pump shaping vs crystal shaping in various degrees of freedom. (a) Engineering the spatial correlations between different spatial HG modes using pump shaping. (b)
Engineering the JSI using pump shaping. (c) Engineering the spatial correlations between different spatial HG modes using crystal shaping. (d) Engineering the JSI using crys-
tal shaping.
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By writing the RHS of the former equation as a Taylor expansion, we
arrive at

jWi ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p �
j0isj0ii þ k1=2j1isj1ii

þ k2=2j2isj2ii þ k3=2j3isj3ii þ � � �
�
; (6)

where k ¼ tan h2ðrÞ and r is the squeezing parameter.22 The probabili-
ties to create each order of photon pairs is shown in Fig. 3. For r � 1,
the probability of emitting a pair of photons is significantly higher
than the probability of emitting higher-order photon pairs. This is the
operating regime for generation of heralded single photons and
entangled bi-photons since the (unwanted) higher-order photon pairs
deteriorate the purity of the generated state. As r increases, the proba-
bilities of generating jnisjnii for n> 1 increases, therefore approaching
the bright squeezed vacuum regime.

Assuming the pump power is weak (Fig. 3), all the higher order
terms in Eq. (6) can be neglected, and we are left only with the vacuum
state and the state having a single signal photon and single idler pho-
ton, k1=2j1isj1ii: We can now plug Eqs. (3) and (4) to Eq. (2).
Moreover, we now write the spatial and spectral dependence of the
pump field as Epðx; q; zÞ ¼ BpðqpÞSðxpÞ, where S and Bp are the
spectral and spatial functions of the pump field Ep, respectively,
assuming no “z” dependence of the pump field. The evolution of
k1=2j1isj1ii now becomes

e0epesei
ð2pÞ3

ð
dxpdxsdxidqsdqidqp � S xpð Þfpfsfi

�
ðt
0
dtei xp�xs�xið Þt

ð1
�1

dxei kpx�ksz�kixð Þx
ð1
�1

dyei kpy�ksy�kiyð Þy

�
ðL

2

�L
2

dzBpðqpÞvð2ÞðrÞei kpz�ksz�kizð Þzjqs;xsijqi;xii: (7)

Here, jqs;xsijqi;xii means that we have a signal photon with spatial
transverse frequency qs and angular frequency xs, and an idler photon
with spatial transverse frequency qi and angular frequency xi. We
assume that we can extend the boundaries of the time integralðþ1

�1
dtei xp�xs�xið Þt ¼ 2pdðxp � xs � xiÞ: (8)

This expression is a manifestation of the energy conservation of the
SPDC process. Similar to Ref. 19, we can now integrate over the pump
frequency, which owing to the energy conservation relation means
that xp is replaced withxs þ xi,ð

dxsdxidqsdqidqp � S xs þ xið Þfpfsfi

�
ð1
�1

dxei kpx�ksx�kixð Þx
ð1
�1

dyei kpy�ksy�kiyð Þy

�
ðL

2

�L
2

dzBpðqpÞvð2ÞðrÞei kpz�ksz�kizð Þz jqs;xsijqi;xii: (9)

We note that every k component written in Eq. (9) is frequency depen-
dent and is omitted for brevity. Equation (9) can now be solved either
numerically or, sometimes, analytically. Importantly, although this
equation can give valuable information about the basic correlations
between different degrees of freedom, it does not take into account dif-
fraction and high-order contributions [Eq. (6)]. Therefore, a more gen-
eral numerical solution is needed, given in Sec. IVA few assumptions
can help us to further simplify the result. Assuming vð2ÞðrÞ ¼ vð2ÞdðzÞ,
we can integrate over the transverse coordinates x and y. This dictates
a transverse momentum condition, qp ¼ qs þ qi, hence integrating
over qp we reach

jWðtÞi /
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
j0isj0ii þ

ffiffiffi
k

p
vð2Þ

ð
dxsdxidqsdqi

� fpfsfiS xs þ xið ÞBpðqs þ qiÞUðxi;xsÞjqs;xsijqi;xii:
(10)

Here, Uðxi;xsÞ is the phase matching function, which depends solely
on the parameters of the nonlinear crystal

Uðxi;xsÞ ¼
ðL

2

�L
2

dz dðzÞei kpzðxiþxsÞ�kszðxsÞ�kizðxiÞð Þz: (11)

If the nonlinearity is constant along the crystal, its dimensionless and
normalized function is dðzÞ ¼ 1, but we can also consider space-
dependent nonlinearity, which is employed in the case of quasi-
phase-matching, as will be discussed in Sec. III. As an example, if the
nonlinearity is periodically modulated with a period K, then
dðzÞ ¼ sign½cosð2pz=KÞ�. The result of Eq. (10) presents the main
contributions to the generated SPDC state: the pump spectral function,
Sðxs þ xiÞ, the pump spatial function, Bpðqs þ qiÞ, and the crystal
phase matching function, Uðxi;xsÞ. We further note that in the plane
wave approximation, the pump spatial function is dðqpÞ; hence, the
transverse phase matching condition becomes qs ¼ �qi. Moreover,
for a collinear interaction in which all the waves are assumed to be
plane waves, the pump spatial function can be ignored, and the

FIG. 3. (a) Probability of emitting the signal and idler photons jnsijnii as a function
of the squeezing parameter r during SPDC, demonstrating the regime for signal-
idler pair emission. (b) The output of squeezed light probabilities is according to the
dashed black line. In this case, the probability of emitting three or more photons
pairs is negligible.
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generated SPDC state is governed by the so-called joint spectral ampli-
tude (JSA), which is given as

JSAðxi;xsÞ � S xs þ xið Þ � Uðxi;xsÞ; (12)

and the SPDC state attains a simple form as

jWðtÞi /
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
j0isj0ii

þ
ffiffiffi
k

p
vð2Þ

ð
dxsdxifpfsfiJSAðxi;xsÞjxsijxii: (13)

We emphasize that this result was obtained only after several approxi-
mations were made, and in particular, we assumed that we can take
only the first two terms in the Taylor expansion of Eq. (6). In order to
include higher order terms, it is necessary to use numerical methods,
as will be discussed in Sec. IV.

III. PHASE MATCHING CONSIDERATIONS AND
FABRICATION METHODS

Two of the most important implications of the derivation in Sec.
II are the requirements for momentum and energy conservation. In
the SPDC process, these conservation laws shape the entangled photon
state. Energy conservation ensures that the combined energy of the
resulting signal and idler photons equals that of the incoming pump
photon, determining their wavelengths. Simultaneously, momentum
conservation dictates that the total momentum remains constant. This
dual conservation requirement enables shaping the signal-idler correla-
tions for different degrees of freedom of light. Here, we will review the
two main methods to achieve phase matching—birefringent phase
matching and quasi-phase-matching (QPM). The latter requires
means of modulating the nonlinear coefficient, and we will review two
methods to achieve it—electric field poling of ferroelectrics and laser-
induced poling. We will also briefly review two other platforms used in
generating quantum light—optical waveguides and metasurfaces.

A. Birefringent phase matching and quasi-phase-
matching

SPDC requires conserving the photon momenta in the process,
or in other words, satisfying the phase matching condition, ~kp ¼ ~ks
þ~ki þ ~kc . There are two main methods to achieve this: birefringent
phase matching and quasi-phase-matching. The traditional method
relies on the birefringence of nonlinear crystals. There are two types of
birefringent crystals. The first are uniaxial crystals (such as LiNBO3 or
LiTaO3) in which the refractive index along two crystallographic
axes—X and Y—is identical and is called the ordinary index no, and is
different with respect to the extraordinary index along the optical axis,
or Z axis, nz . In the second group of known as biaxial crystals, the
refractive index is different in every direction. Important examples are
KTiOPO4;KTiAsO4;RbTiAsO4, and RbTiOPO4, but it should be
noted that also for these crystals, the refractive indices in the X and Y
directions are relatively similar, and are quite different with respect to
nz . In order to satisfy the phase-matching condition, one needs to find
the correct propagation angles and crystal temperatures. Specifically,
the refractive index at an angle h with respect to the optical axis,
denoted nexðhÞ is given by21

1

nexðhÞ2
¼ sin2ðhÞ

n2z
þ cos2ðhÞ

n2o
: (14)

As can be seen, nexðhÞ can attain any value between no and nz by vary-
ing the angle h between 0 and p=2. Hence, by using the dependence of
refractive index on angle, polarization, and temperature, it is often pos-
sible to satisfy the phase matching conditions and obtain creative con-
figurations for SPDC, see for example, Ref. 2. However, birefringent
phase matching is limited in several key aspects. It is not always possi-
ble to find the required phase matching conditions, since they depend
on the given dispersion of the nonlinear crystal. In addition, since the
interacting waves must be polarized along different directions, only
non-diagonal terms of the vð2Þ tensor can be used. They are usually
smaller with respect to diagonal elements, and in particular, with
respect to the largest element, vð2Þ33 . The efficiency may also be reduced
owing to the walk-off between the interacting beams.

These problems can be solved by quasi-phase-matching
(QPM),23 which is based on modulating the nonlinear coefficient of
the crystal along the interaction path. In its simplest form, QPM is
obtained by periodic one-dimensional modulation of the nonlinear
coefficient, with a period K. For binary (positive and negative)
modulation, with a duty cycle of 0.5, the nonlinear coefficient can be
written as

vð2Þeff ðzÞ ¼ vð2Þij

X1
m¼�1

2
pm

sin
pm
2

� �
e�i2pmK z : (15)

From the Fourier series decomposition, it is easy to see that this
modulation provides z � dependent phase terms at odd integer mul-
tiples of 2p=K that can be used for phase matching. The highest effi-
ciency is obtained for first-order QPM, m ¼ 1, and in that case, the
material’s second-order tensor element vð2Þij is multiplied by the
Fourier coefficient 2=p. Owing to the dispersion of the nonlinear
crystal, if phase matching is satisfied for one order, the phase mis-
match is typically very large for all the other orders. Hence, their
effect can be ignored.

The key advantage here is that the phase matching is no longer
limited by the crystal’s dispersion and birefringence properties and can
be satisfied by selecting the modulation period K. Moreover, the pro-
cess can be designed so that all the interacting waves have the same
polarization, thus enabling the benefit of the large diagonal elements of
the vð2Þ tensor. As an example, if all the waves are polarized along the
Z axis of LiNbO3, the relevant nonlinear tensor element is vð2Þ33 . It is
interesting to note that even though the effective nonlinear coefficient
is reduced by 2=p for first-order QPM, there is still significant
improvement in efficiency with respect to a birefringent phase match-
ing process. For example, if the two waves are polarized along the X
direction to generate a nonlinear polarization term along the Z direc-

tion, the relevant tensor element is vð2Þ31 and the improvement in effi-

ciency in the case of QPM is ½ð2=pÞvð2Þ33 =v
ð2Þ
31 �2 � 20.

Moreover, QPM is not limited to periodic modulation of the
nonlinear coefficient in one dimension. Specifically, it is possible to
periodically modulate the nonlinear coefficient in two- or three-
dimensions24–26 and to extend the modulation toward quasiperiodic
modulations.27–29 Quasiperiodic poling enables the simultaneous
phase matching of several interactions. Moreover, increase or decrease
in the modulation period along the interaction30,31 allows for broad-
band adiabatic frequency conversion. This flexibility is also very
useful for designing SPDC interactions, as will be outlined in Secs.
III B–IIID and V.
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B. Modulation of the nonlinear coefficient and electric
field poling

QPM relies on the ability to spatially modulate the nonlinear
coefficient with micrometer-scale resolution. Several methods were
studied in the past for that, including ion exchange,32 irradiation with
electron beams,33 and laser-induced domain inversion34 (more on this
in Sec. IIIC), but in the last three decades, the dominant method for
that is electric field poling of ferroelectric crystals.35 This method relies
on the delivery of a high-voltage pulse through structured electrodes.
When the applied electric field surpasses the coercive threshold of the
ferroelectric crystal, it leads to an inversion of the electrical dipole’s
alignment within the areas marked by the electrodes. Consequently,
this leads to a permanent binary alteration of the second-order suscep-
tibility, and the poled shape follows the arrangement of the electrodes,
see Fig. 4(a).

Electric field poling is now widely used with LiNbO3, LiTaO3,
and KTiOPO4, and periodically poled crystals are available commer-
cially from several vendors. The typical crystal dimensions are a thick-
ness of 0.5–1mm, length of 10–40mm, and poling periods of 5–40
lm, but state of the art values include thickness of up to 10mm (Ref.
36) and poling periods as small as 317nm.37 Since the poling structure
is defined by electrodes that are patterned on the plane of the crystal,
the poling method is not limited to one-dimensional periodic struc-
tures and was extended to chirped,30,31 quasiperiodic,27–29 and two-
dimensional designs.24,25

C. 3D laser-induced poling

In recent years, another method was demonstrated for modulat-
ing the nonlinear coefficient of ferroelectrics, based on point-by-point
focusing of an ultrafast laser. This method enables the modulation of
the nonlinear coefficient in all three dimensions of the crystal, see
Fig. 4(b). There are two variants of the laser-induced modulation. One
variant is based on local heating of the crystal at the focal point of the
laser. This destroys the crystalline structure at that point, so that the
crystal becomes amorphous and the nonlinear coefficient is locally
erased. This method was demonstrated for LiNbO3.

7 A second variant
is based on generating a local temperature gradient at the focal point.
Under the right conditions, this gradient locally inverts the spontane-
ous polarization of the crystal, and therefore inverts the nonlinear

coefficient of the crystal. This method was demonstrated for barium
calcium titanate, barium calcium niobate,8 and recently also for
LiNbO3.

38 More details on optical poling of ferroelectrics can be found
in a recent review article.9

Three-dimensional modulation of the nonlinear crystal increases
the phase matching options, as the crystal provides reciprocal vectors
for phase matching in all three dimensions. This enables new opportu-
nities for nonlinear holography,13,14 and even for storing and retrieving
multiple images in a single nonlinear crystal.15,16 The typical lengths of
3D poled structures are still much shorter than those achieved by elec-
tric field poling, with record length of about 2.6mm.39 The typical pol-
ing periods are in the range of 10 lm, but the state of the art is as small
as 500nm.38

D. Waveguides and metasurfaces

While this paper focuses primarily on bulk nonlinear metamate-
rials, we would like to briefly mention other platforms for generating
quantum light. Optical waveguides have been studied for many years
as nonlinear frequency converters40 and more specifically for quantum
optics applications.41,42 Here, we mainly consider waveguides that uti-
lize second-order nonlinearity. In lithium niobate, waveguides can be
formed by titanium ion-diffusion43 or proton exchange,44 whereas in
KTiOPO4 (KTP) they can be formed by Rb-Ba ion exchange.45,46 In
KTP, this process is used to form a segmented waveguide, which
simultaneously guides the light and enables QPM.

In recent years, an emerging new platform has been based on
wafers of thin film lithium niobate (TFLN).47 Typically, these wafers
have a layer of several hundred nanometers of LiNbO3 on a lower
index SiO2 substrate. Hence, in comparison to waveguides that are
based on ion-diffusion, the TFLN waveguides provide much tighter
confinement of the modes, with a smaller waveguide cross-sectional
area, thus leading to higher efficiency.

Key advantages of waveguide frequency converters are improved
conversion efficiency with respect to bulk crystals, the ability to control
the dispersion using the waveguide dimensions, and the possible inte-
gration of the frequency converter with other optical devices such as
directional couplers and modulators on the same chip. In terms of effi-
ciency, one can compare second harmonic generation in a waveguide
with a length L and cross-sectional area Aw to a bulk crystal with the
same length, where confocal focusing is used. The ratio of efficiencies
for the two options is48

gwaveguide
gbulk

� kxL
2nxAw

; (16)

where nx is the refractive index of the fundamental wave. For a typical
interaction length of 1 cm, the improvement in efficiency can reach
2–3 orders of magnitude.

In addition to the high efficiency, optical waveguides offer the
possibility of controlling the dispersion of the guided modes, which
depends on the waveguide’s geometrical parameters.49 Just as QPM
achieved by electric field poling takes care of the phase velocity match-
ing, dispersion engineering can be used to tailor the group velocity
matching of the interacting waves. An important application of group
velocity matching is to enable efficient conversion of ultrashort pulses,
which would otherwise suffer from temporal walkoff between the
interacting waves. As for quantum applications, it offers the ability to
generate separable signal-idler states in SPDC. In bulk materials, this isFIG. 4. Poling techniques: (a) electric field poling and (b) laser-induced poling.
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possible only for a handful of nonlinear crystals at very specific wave-
lengths. However, the dispersion engineering that is offered by optical
waveguides enables us to reach this condition at any chosen
wavelength.50

The key limitation of waveguide devices is the power limitation.
Since the mode size is of the order of 1lm, the intensity can easily sur-
pass the damage threshold of the crystal, even for moderate power lev-
els. However, in quantum optics applications, there is no need to reach
high power, in particular since this may lead for unwanted generation
of higher order terms, as explained in Sec. II.

Another interesting platform that we would like to briefly men-
tion is surface metamaterials or metasurfaces in short. Surface meta-
materials are two-dimensional structures that are typically composed
of an array of either metal or dielectric sub-wavelength structures,
where the unit cells are commonly referred to as meta-atoms. These
devices are characterized for specific wavelengths by strong (resonant)
light–matter interaction in each meta-atom and open many interesting
possibilities for shaping the wavefront, polarization, and spectrum of
light. Moreover, in some cases, by proper selection of the materials and
the unit cell structure, new wavelengths can be generated through a
nonlinear process.51 Specifically, SPDC was demonstrated in nonlinear
metasurfaces based on GaAs resonant structures on fused silica sub-
strate,52 on silica resonant structures on thin LiNBO3 substrate

53 and
on plasmonic metasurfaces, using silver stripes on bulk LiNBO3.

54 The
latter example involves metals that may exhibit significant losses, thus
reducing the coherence of the quantum state. Nevertheless, it was
shown that the quality of the quantum state is preserved, even for
highly absorbing structures, as long as the dephasing time is much lon-
ger than the propagation time.55 This condition can be reached in
metasurfaces that are characterized by very short, sub-micron, interac-
tion length. More details can be found in recent reviews on metasurfa-
ces for quantum optics applications.56,57

Perhaps the most interesting feature of the nonlinear metasurfa-
ces is the relaxed phase-matching requirement; since the interaction is
performed in a very thin structure, resulting in a very short effective
interaction length L in the longitudinal direction, the efficiency, which
scales as sin c2ðDkL=2Þ can remain high for large longitudinal phase
mismatch values Dk. This means that multiple signal-idler pairs, with
different wavelengths can be generated. Typically, one of these wave-
lengths is set by the resonance of the meta-atom, whereas the pump
determines the other wavelength via energy conservation. This allows
for the generation of different types of cluster states by pumping the
metasurface with multiple pump frequencies.52 The main limitation of
metasurfaces for quantum optics application is their relatively low effi-
ciency, owing to the very short interaction length. At present, the typi-
cal coincidence rate is at most of a few counts per second; hence, 3–4
orders of magnitude lower with respect to those achieved by bulk
devices.

In addition to the generation of quantum light, metasurfaces can
also be used for performing unitary transformations between its differ-
ent degrees of freedom. As examples, liquid-crystal-based Q-plates58 as
well as silicon-based geometric phase metasurfaces59 were used to cou-
ple between the spin and angular degrees of freedom of a single
photon.

IV. SIMULATING SPDC

In Sec. II, we presented straightforward, closed-form approxima-
tions for SPDC applicable to basic scenarios. However, for more

complex situations where the nonlinearity varies arbitrarily within the
crystal, diffraction effects are present, higher-order effects need to be
considered, or correlations need to be computed alongside the state,
numerical solutions are required.60 This section will outline the
numerical methodologies employed for such cases.

In the effort to model the behavior of a pump interacting with
nonlinear media, our goal is to develop a simulation tool capable of
predicting the output quantum state and the correlations between
entangled photons. To achieve this, we adopt the slowly varying enve-
lope approximation for each frequency component independently, fol-
lowing the approach outlined in Ref. 61. The equations of motion,
derived from Maxwell’s equations62 and applied to the frequency-
dependent field operators6 under the undepleted coherent pump and
slowly varying envelope approximations, are expressed as follows:6,63

i
@

@z
þ r2

?
2kiðxÞ

 !
Âiðr;xÞ

¼ � x2

c2kiðxÞ v
ð2ÞðrÞ

ð
dx0e�iDkðx;x0ÞzApðr;xþ x0ÞÂ�

s ðr;x0Þ:
(17)

Here, Âi;s represent the idler and signal field operators, respectively,
and Ap is the pump field. The transverse Laplacian is denoted by r2

?,
vð2ÞðrÞ represents the second-order susceptibility, c is the speed of
light, and kiðxÞ is the idler’s wavevector, dependent on the frequency.
The term r2

? encapsulates diffraction, while the phase-mismatch
Dkðx;x0Þz encapsulates dispersion. The same equation can be written
for the signal by interchanging “i” with “s” and “s” with “i.”
Henceforth, we will use the coupling coefficient jjðr;xÞ
¼ x2

c2kjðxÞ v
ð2ÞðrÞ, where j ¼ i; s.

Examining correlations between entangled photons in quantum
optics is a crucial method for characterizing their quantum behavior.
Here, we show a generalized method for simulating correlations
between photons created via SPDC, in the spatial and spectral
domains. The first-order correlation in the case of SPDC can be writ-
ten as6,63

Gð1Þ
ab ðr; t; r0; t0Þ ¼ h0jÂ†

aðr; tÞÂbðr0; t0Þj0i; (18)

where a; b represent either the idler or signal. In the spatial domain,62

ÂaðrÞ ¼
P

q
eiq�rffiffiffi
V

p âkaþq is the paraxial envelope operator around a car-

rier with a wavevector ka, and âkaþq is the annihilation operator, anni-

hilating a photon in mode kaþq. In its degenerate form, Gð1Þ
aa ðr; t; r; tÞ

is the probability of detecting a single photon in mode a at position
and time ðr; tÞ. In the spectral domain, ÂaðtÞ is the slowly varying-
envelope operator. By inserting the identity operator I ¼Pc j1cih1cj,
we write the simplified first-order correlation function as

Gð1Þ
ab ðr; t; r0; t0Þ ¼

X
c

h0jÂ†

aðr; tÞj1cih1cjÂbðr0; t0Þj0i; (19)

where j1ci is a single photon state in mode c. The index c can repre-
sent spatial modes, frequencies, and polarizations. For the spatial
domain c ¼ k whereas for the spectral domain c ¼ Xi;s. In the spectral
domain, there is an integral over dX since we consider a range of fre-
quencies for the pump wave.
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A second type of first-order quantum correlation involves terms
that are quadratic in the annihilation or creation operators,

Qabðr; t; r0; t0Þ ¼ h0jÂaðr; tÞÂbðr0; t0Þj0i: (20)

We insert again the identity operator and write the simplified function
as

Qabðr; t; r0; t0Þ ¼
X
c

h0jÂaðr; tÞj1cih1cjÂbðr0; t0Þj0i: (21)

We define four amplitudes or matrix elements as

Avac
i ðr;xÞ 	 h0jÂiðr;xÞj1ii;

Aout
i ðr;xÞ 	 h1sjÂiðr;xÞj0i;

Avac
s ðr;xÞ 	 h0jÂsðr;xÞj1si;

Aout
s ðr;xÞ 	 h1ijÂsðr;xÞj0i:

(22)

We want to solve the dynamics in terms of the amplitudes defined in
Eq. (22). Multiplying the Heisenberg equations by h1cj from the left
and by j0i from the right, we get

i
@

@z
þ r2

?
2kiðxÞ

 !
Aout
i

Avac
i

 !
ðr;xÞ

¼ �jiðr;xÞ
ð
dx0e�iDkðx;x0ÞzApðr;xþ x0Þ Avac

s

Aout
s

 !�
ðr;x0Þ;

(23)

i
@

@z
þ r2

?
2ksðxÞ

 !
Aout
s

Avac
s

 !
ðr;xÞ

¼ �jsðr;xÞ �
ð
dx0e�iDkðx;x0ÞzApðr;xþ x0Þ Avac

i

Aout
i

 !�
ðr;x0Þ:

(24)

We solve these four coupled equations under the initial conditions at
the beginning of the crystal (z ¼ 0), Avac

a ðr;xÞ ¼ 0. In principle, Eqs.
(23) and (24) can now be solved deterministically. The solution is
found in a similar manner to solving coupled wave equations in classi-
cal nonlinear optics, using for example the method of split-step
Fourier.64 This approach is valid and may be efficient when the num-
ber of modes supported by the system is small. This numerical method
partitions propagation through the nonlinear medium into steps small
enough to allow independent evaluation of linear effects resulting from
the dispersion characteristics of the medium, and nonlinear effects
describing the nonlinear interactions introduced by the medium.
Solving in this independent iterative manner results in a numerical
solution to an equation with no general analytic solution. The method
involves the calculation of the effects of the linear operator in the spa-
tial frequency domain, and the nonlinear operator in the spatial
domain, requiring the application of the fast Fourier transform (FFT)
and inverse FFT with every step. Assuming transverse crystal dimen-
sions N � N , computationally the method requires z=dz FFT opera-
tions over the two-dimensional transverse plane, requiring
z=dz � OðN2 logNÞ operations. Additionally, as an increasing step size
results in a higher approximation error, achieving good numerical sol-
utions can be computationally expensive.

The second-order correlation function, Gð2Þ
abbaðc; c0; c0; cÞ, repre-

sents the probability of detecting one photon in mode c and another in
mode c0. Experimentally, this quantity corresponds to the coincidence
rate between these two photons. Specifically, we can express this as

Gð2Þ
abbaðc; c0; c0; cÞ

¼ hÂ†

aðcÞÂaðcÞihÂ†

bðc0ÞÂbðc0Þi
þ jhÂ†

aðcÞÂbðc0Þij2 þ jhÂaðcÞÂbðc0Þij2

¼ Gð1Þ
aa ðc; cÞGð1Þ

bb ðc0; c0Þ þ jGð1Þ
ab ðc; c0Þj2 þ jQabðc; c0Þj2: (25)

Given the quadratic nature of the Hamiltonian of SPDC and the
Gaussian essence of the vacuum state, the resulting output state also
adopts a Gaussian form. Notably, all higher-order moments can be
derived from the linear and quadratic moments.5,6 This was used in
the derivation shown in Eq. (25).

A. Spatial domain

Spatially entangled photons offer a unique avenue for exploring
high-dimensional entanglement, an area of significant interest in quan-
tum information. Their potential for high-density encoding of quan-
tum information has drawn considerable attention. Numerous studies
have delved into the spatial correlations exhibited by entangled photon
pairs.5,6,65–69 This interest has been fueled by the discovery of novel
applications that capitalize on the quantum properties of these photons
for tasks like image processing and multichannel operations.

In this section, we make two primary assumptions. First, we con-
sider a CW pump. In the case of a CW pump, the pump field is
assumed to have the form Apðr;xþ x0Þ ¼ ApðrÞdðx� xpÞ. Second,
we assume that both the idler and signal undergo postselection
through narrow spectral filters. These assumptions simplify the cou-
pled Heisenberg equations, resulting in the following expressions:6

i
@

@z
þr2

?
2ki

� �
Aout
i

Avac
i

� �
¼ �jiðrÞe�iDkzApðrÞ Avac

s
Aout
s

� ��
; (26)

i
@

@z
þr2

?
2ks

� �
Aout
s

Avac
s

� �
¼ �jsðrÞe�iDkzApðrÞ Avac

i
Aout
i

� ��
: (27)

In principle, the solution to Eqs. (26) and (27) can be determined by
scanning over all potential modes and their corresponding mode enve-
lopes as boundary conditions. This method is valid and can be efficient
when the system supports a small number of modes. However,
employing a stochastic boundary condition can be more efficient when
dealing with a continuum of transverse modes, as demonstrated in
Refs. 5, 6, and 61. In that case, rather than calculating separately for
each plane wave mode, one can define “noise modes,” which are super-
positions of single photon modes with different wavevectors, where
each mode has an random phase.

B. Spectral domain

As we discussed in Sec. II [see Eq. (12)], a commonly employed
approximation for the joint spectral intensity (JSI)70 is JSI ¼ jJSAj2
¼ jSðxþ x0ÞUðx;x0Þj2. This approximation is derived through first-
order perturbation theory. As a reminder, Sðxþ x0Þ is the spectral
profile of the pump laser, and Uðx;x0Þ denotes the phase-matching
function, see Eq. (11). It is important to note that this approximation
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relies on the assumption that the joint spectral properties of entangled
photon pairs are exclusively influenced by the spectral characteristics
of the pump laser and its interaction with the nonlinear crystal respon-
sible for generating the photon pairs.

However, caution is warranted as this approximation may not
always be accurate. While it serves as a convenient and often useful
model for comprehending joint spectral characteristics, its limitations
become apparent, particularly when confronted with specific experi-
mental conditions or nuanced crystal properties that this simplified
approach might not adequately represent.

In this section, we assume plane waves; thus, the term r2
?

2k disap-
pears. This simplifies the coupled Heisenberg equations [see Eqs. (23)
and (24)], resulting in the following expressions:63

i
@

@z

Aout
i;X

Avac
i;X

 !
ðz;xÞ ¼ �jiðx; zÞ

ð
dx0eiDkðx;x

0ÞzApðxþ x0Þ

� Avac
s;X

Aout
s;X

 !�
ðz;x0Þ;

i
@

@z

Aout
s;X

Avac
s;X

 !
ðz;xÞ ¼ �jsðx; zÞ

ð
dx0eiDkðx;x

0ÞzApðxþ x0Þ

� Avac
i;X

Aout
i;X

 !�
ðz;x0Þ: (28)

Now we write the first-order correlations at the end of the crystal,
z ¼ L, considering all frequenciesX,

Gð1Þ
ab ðx;x0Þ ¼ da;b

ð
dXAout�

a;X ðL;xÞAout
b;XðL;x0Þ; (29)

where the Kronecker delta in Eq. (29) arises due to the vanishing pho-
ton amplitudes other than those appearing in Eq. (22), implying that
Gð1Þ
is ¼ Gð1Þ

si ¼ 0. The second type of first-order quantum correlation
will take the form of

Qabðx;x0Þ ¼ ð1� da;bÞ
ð
dXAvac

a;XðxÞAout
b;Xðx0Þ; (30)

where the Kronecker delta appears for a similar reason as in Eq. (29),
implying that Qii ¼ Qss ¼ 0. The second-order correlation function is

Gð2Þ
abbaðx;x0;x0;xÞ ¼ Gð1Þ

aa ðx;xÞGð1Þ
bb ðx0;x0Þ þ jGð1Þ

ab ðx;x0Þj2

þ jQabðx;x0Þj2: (31)

Figure 5 presents a schematic chart detailing the simulation procedure
employed to calculate the second-order correlation [Eq. (31)]. The
simulation involves a fixed pump and crystal configuration that
remains constant across all iterations. In each iteration, the initial
amplitudes for the signal and idler outputs, denoted as Aout , are initial-
ized as zero vectors of length M. Additionally, the vacuum amplitudes,
Avac, for both signal and idler is set to have a distinct single frequency,
represented as a vector of length M with zeros in all elements except
one. The coupled wave equations are then solved using the split-step
Fourier method. The resulting solution is utilized to compute the
matrices Gð1Þ

ab and Qab, both of size M�M. These matrices are
updated in each iteration and ultimately summed to derive the
second-order correlation matrix Gð2Þ

abba.

C. Inverse design

Inverse design in optics draws significant attention these days,
enabling the engineering of complex structures ranging from metama-
terials to nanophotonics.71,72 However, its use in nonlinear and quan-
tum optics is still in its infancy. Inverse design of the geometric
properties of waveguides was utilized in coherent supercontinuum
generation73 and more recently allowed for the design of reflectors in
Fabry–P�erot cavities in silicon carbide for use in quantum and nonlin-
ear optics.74 Traditionally, nonlinear optics simulation tools rely
heavily on the split step method.64 Therefore, to enjoy the benefits of
inverse design in these fields, one may consider incorporating a split-
step method into existing optimization algorithms.

One such example of the use of inverse design tools in nonlinear
and quantum optics is the SPDCinv inverse design model.6 This model
optimizes (locally) a system’s physical parameters to achieve a desired
bi-photon state realized through SPDC, using the state’s second-order
correlation matrix, Gð2Þ

abba, or density matrix as observables. The learn-
ing model is physically constrained by the Heisenberg equations of
motion and SPDC conservation laws, such that the signal and idler
wavelengths and momenta are well-defined. The four coupled
Heisenberg equations [Eqs. (23) and (24)] are solved by integrating
along the propagation axis using the split-step Fourier method. The
model assumes a Gaussian white noise boundary condition at z ¼ 0,
whose standard deviation matches the vacuum field uncertainty, as to
not limit the number of supported transverse modes. The vacuum

FIG. 5. Schematic chart of the simulation procedure. The pump and crystal are
determined initially and remain the same for all iterations. In each iteration, the initial
signal and idler output wavefunctions Aout are set to a zero vector of length M, and
the signal and idler vacuum wave function Avac are initialized to have a (different)
single frequency (a vector of length M of zeros except one element). The coupled
wave equations are then solved using the split-step Fourier method. The output
solution is used to calculate Gð1Þ

ab and Qab, which are M�M large matrices. In each
iteration, these two matrices are updated. Finally, they are summed to calculate the
second-order correlation matrix Gð2Þ

abba.

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 12, 011323 (2025); doi: 10.1063/5.0216714 12, 011323-9

VC Author(s) 2025

 03 M
arch 2025 16:36:40

pubs.aip.org/aip/are


noise is approximated for all transverse modes by sampling the
Gaussian white noise and solving the coupled Heisenberg equation in
parallel for the ensemble of realizations.

The SPDCinv model focuses on the physical parameters contained
within the interaction coupling coefficients, namely, the crystal’s
second-order susceptibility and the pump profile. In other words, the
model optimizes the pump’s transverse profile and the nonlinear crys-
tal’s poling profile to achieve the desired bi-photon state. Note that here
the propagation is arbitrarily defined along the “z” direction, and the
second-order susceptibility is a function of both the transverse location
and z. An example in which the model was tasked with designing a
nonlinear crystal, which when paired with a Gaussian pump creates the
state jwi ¼ ðj1;�2i þ j0;�1i þ j � 1; 0iÞ þ j � 2; 1iÞ= ffiffiffi

4
p

in SPDC,
is displayed in Fig. 6. When substituting the Gaussian pump distribu-
tion with a Laguerre–Gauss distribution carrying higher-order OAM,
the OAM conservation in the resultant biphoton state shifts, demon-
strating the dynamic nature of the proposed crystal design. We note
that graphics processing units (GPUs) are used for parallel computation
and optimization of parameters, unlike simple numerical solutions of
the forward models that require regular central processing unit (CPU).

V. APPLICATIONS OF QUANTUM LIGHT GENERATED
BY SHAPED LIGHT AND STRUCTURED CRYSTALS
A. Spatial domain

A key component of structured light79 is the spatial degree of
freedom, i.e., the phase and amplitude of the electro-magnetic field’s

wavefront. The generation of structured quantum optics started in the
seminal work by Mair et al.80 There, a shaped pump beam with differ-
ent topological charges BBO crystal was used to generate entanglement
for the down-converted photons between different OAM. Following
Eq. (10), many works established the connection between modulated
pump beams and the resulting quantum correlations between different
spatial modes. For example, Torres et al.81 calculated the “spiral band-
width”—the relation between the OAM-shaped pump beam and the
resulting correlations of the signal and idler with different topological
charges. This work was then generalized for the Hermite Gauss basis
by Kovlakov et al.82 and Walborn et al.83 Since then, shaping the
pump beam in SPDC has been the key method for controlling the
entanglement of single photons with different spatial mode profiles.
This enabled a plethora of functionalities such as quantum key distri-
bution,84,85 quantum sensing,86,87 and quantum computing.88

Conversely, using the crystal degree of freedom to control the
spatial degree of freedom using modulated nonlinearity has remained
scarce until recent years. The first works (see Fig. 7) that took into
account the possibility of generating spatial quantum correlations were
by Torres et al.89 Then, the first that experimentally showed it is possi-
ble to spatially control the emitted photons attributes using nontrivial
poling structure were Leng et al.75 Later, nonlinear fork gratings were
theoretically proposed for engineering the entanglement between dif-
ferent OAM modes of the down-converted photons.90,91 The first
experimental realization of engineered nonlinear crystals for shaping
the quantum correlations were based on two-dimensional periodic

FIG. 6. Example of the inverse design of biphoton states.6 (i) The target observable in the form of signal, idler coincidence counts supplied to the model, and (ii) the learned
coincidence counts post-optimization. (iv) and (v) The pump’s fixed Gaussian intensity profile, and three unit cells of the locally optimal design of the crystal vð2Þ parameter. (iii)
and (vi) The shifted coincidence counts with higher OAM after changing the Gaussian pump with a LG0;2 pump. Reproduced with permission from Rozenberg et al., Optica 9,
602–615 (2022). Copyright 2022 Optica Publishing Group.6
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poling, by Megidish et al.92 and Jin et al.93 In these works, the crystal
enabled direct generation of path entangled N00N states by engineer-
ing the entanglement between different k-vectors of the down-
converted photons. More recently, this concept was further extended
by Di Domenico et al.76 by using two tilted one-dimensional gratings,

forming a V-shape, see Fig. 7(B). Experiments by Yesharim et al.69

demonstrated how spatial correlations can be shaped using 2D PPKTP
crystals, therefore experimentally opening the field of quantum nonlin-
ear holography (QNH). QNH offers several advantages: The most
immediate is the miniaturization of the shaping process to the bare

FIG. 7. Bulk nonlinear quantum metamaterials in the path and spatial domain. (A) A Gaussian phase for a structured nonlinear crystal (LiNbO3) give rise to a focusing effect in
SPDC without the need for an extra lens. Reproduced with permission from Leng et al., Nat. Commun. 2, 429 (2011). Copyright 2021 Springer Nature.75 (B) Crystal (I) and
pump (II) shaping enables direct generation of path-entangled N00N states. Reproduced with permission from Domenico et al., Opt. Express 30, 21535–21543 (2022).
Copyright 2022 Optica Publishing Group.76 (C) Fork-shaped 3D NLPCs are excepted to generate spatial mode entanglement with built-in separation between the signal and
idler. Reproduced with permission from Xu et al., Phys. Rev. A 104, 063716 (2021). Copyright 2021 American Physical Society.77 (D) Cascaded designs of different spiral quan-
tum nonlinear holograms can engineer different quantum states in a compact manner. Reproduced with permission from Yu et al., Photonics 9, 504 (2022). Copyright 2022
Authors, licensed under a Creative Commons Attribution (CC BY) license.78 (E) Experimental results of quantum nonlinear holography. Reproduced with permission from
Yesharim et al., Sci. Adv. 9, eade7968 (2023). Copyright 2023 Authors, licensed under a Creative Commons Attribution (CC BY) license.69 Microscopic image of the fabricated
crystal and its comparison to a standard type-2 PPKP (upper part). Correlations between different spatial modes in the HG basis using the HG10 NLPC, generating a bell state
in the spatial domain (lower part).
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minimum, as the crystal already exists in every scheme that uses qua-
dratic nonlinearity for SPDC. However, QNH may potentially be ben-
eficial for ultrafast switching of different quantum states by using
different QPM periods on the same crystal.11,15,16 Recently, with the
advent of 3D nonlinear photonic crystals, a new interest became
apparent in using the crystal degree of freedom, following three theo-
retical papers.6,77,78 Furthermore, using a cascaded design of spatial
patterns on the same nonlinear crystal presents an opportunity to
overcome challenges in quantum state engineering, stemming for
example from the conservation of OAM. In Ref. 94, Kysela et al.
showed it is possible to shape the spatial quantum correlations by
using the path-identity concept. There, three different state genera-
tions, resulting from different spatially distributed pump beams, were
cascaded to achieve better tunability when compared to a single shaped
pump beam. This concept can now be implemented in nonlinear pho-
tonic crystals, as theoretically demonstrated by Yu et al.78 In terms of
fabrication, QNH still has some challenges for wide usage. For exam-
ple, the approximate duty cycle (that helps the fabrication process)
affects the overall purity of the generated state.69 In addition, random
fabrication errors,6 changes the target entangled state. This can be par-
tially mitigated by pump shaping, which has its own disadvantages
(loss and large footprint).

B. Spectral domain

In the spectral domain, employing structured crystals enables the
creation of Fock states, squeezed quadrature states, and entangled pho-
ton pairs, thus paving the way for innovative applications in comput-
ing, sensing, and communications.

The manipulation of photon pair spectra via second-order non-
linearity in crystals95,96,101,102 has emerged as a focal point in photonics
research. Illustrated in Fig. 8(A) is an image of a domain-engineered
crystal, marking a pioneering effort in utilizing such crystals for gener-
ating pure states. A follow-up work [Fig. 8(B)] used simulated anneal-
ing to find an optimized poling configuration that allows arbitrary
shaping of the PMF, focusing on pure states.

Shaping the PMF enables the creation of high-photon-number
multiphoton states, such as heralded Fock states, essential for quantum
information processing (QIP). In another study,98 a method for pro-
ducing discrete frequency-bin entanglement is introduced, distinct
from conventional techniques involving filtering or resonant cavities.
This approach employs a domain-engineered nonlinear crystal to cre-
ate an eight-mode frequency-bin entangled source operating at tele-
communication wavelengths [Fig. 8(C)]. The method capitalizes on
the advantages of bulk crystal sources, including high heralding effi-
ciency and straightforward implementation.

Moreover, a combined approach demonstrating two-dimensional
control JSI has been shown.99 This method involves controlling two
degrees of freedom: the phase-matching function and the pump spec-
trum. Such control enables the experimental generation of a diverse
range of spectrally encoded quantum states, including frequency
uncorrelated states, frequency-bin Bell states, biphoton qudit states, as
well as a four-lobe state [Fig. 8(D)]. Additionally, theoretical analyses
have indicated the feasibility of generating a square cluster state using
this method.63

In another study,50 researchers manipulate the dispersion and
quasi-phase-matching conditions of a waveguide in thin-film lithium
niobate to generate spectrally separable photon pairs in the

telecommunications band. As depicted in Fig. 8(E), the figure illus-
trates a deleted-domain Gaussian-apodized poling electrode pattern
and a two-photon microscopy image of the poled film on the right,
alongside a JSI measured using dispersion-engineered thin-film lith-
ium niobate on the left. This design leverages waveguide geometry-
induced dispersion to fulfill the group velocity matching (GVM) con-
dition, enabling the generation of a spectrally separable biphoton state.

Domain-engineered NLPCs offer a pathway to simplify the gen-
eration of frequency combs. Some studies employ periodically poled
NLPCs within complex configurations to produce desired entangled
states. Figure 8(F) illustrates the concept of entanglement within a
quantum optical frequency comb. In a sophisticated experimental
arrangement,100 two periodically poled KTPs are employed to create
and characterize a dual-rail quantum-wire cluster state within the
quantum optical frequency comb. Another experiment103 utilizes peri-
odically poled lithium niobite to establish frequency bins.
Incorporating domain-engineered NLPCs has the potential to enhance
robustness and streamline experimental setups.

C. Hyperentanglement

In recent years, the exploration of hyperentanglement,104 defined
as the combination of two or more degrees of freedom (DOFs) of light,
has gained significant attention in quantum optics. Hyperentanglement
presents an avenue for expanding the Hilbert space. Such a set of
entangled states not only facilitates selective control and measurements
of individual subsystems but also holds the potential to enhance existing
quantum protocols and introduce novel ones.

The first experimental validation of hyperentanglement across all
DOFs105 employed photon pairs generated in SPDC. Entanglement
was confirmed by observing a Bell-type inequality violation in polari-
zation, spatial mode, and time energy. The distinctive feature of hyper-
entanglement, as explored in the literature, is its ability to enable
advanced quantum protocols, such as complete Bell-state analy-
sis.106,107 Notably, it has played a pivotal role in achieving the telepor-
tation of multiple DOFs of a single photon.108

A manifestation of hyperentanglement involving spectrum,
polarization, and OAM DOFs was successfully demonstrated.109 By
encoding entanglement between these photons’ properties, the
research not only expands information capacities but also promises
the development of quantum protocols. Notably, these hyperentangled
states exhibit a more intricate entanglement structure compared to
previous demonstrations, owing to their incorporation of both the
spectral and spatial characteristics of light.

Overall, this research provides a robust method for generating
high-dimensional entanglement in photon pairs, paving the way for
exciting applications in quantum communication, cryptography, and
computation.

VI. SUMMARY AND OUTLOOK

To summarize, bulk nonlinear quantum metamaterials are now
seeing an experimental and theoretical surge, thanks to advantages of
simplicity, compact size, robustness, enhanced control over generated
quantum states, and power efficiency. We expect that this is merely
the beginning of a vibrant field that will evolve rapidly due to the need
for sophisticated quantum light sources and owing to improvement of
fabrication technologies such as 3D NLPC using fs lasers and electric
field poling in both waveguide and bulk configurations. One of the

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 12, 011323 (2025); doi: 10.1063/5.0216714 12, 011323-12

VC Author(s) 2025

 03 M
arch 2025 16:36:40

pubs.aip.org/aip/are


next important tasks is to integrate these crystals into existing quan-
tum information processing (QIP) schemes to leverage their advan-
tages. We believe that this will indeed be the case, as regular
periodically poled crystals already exist in many QIP experimental
schemes. The design and fabrication of bulk quantum metamaterials is
the major hurdle in wide adoption of the aforementioned advantages.

One such task is integrating quantum error-correcting capabili-
ties into computation, communication, and information-processing

hardware. In contrast to classical bits of information, quantum bits
cannot be protected against error using repetition code due to the no-
cloning theorem.

The solution of encoding the logical quantum bits into highly
entangled physical quantum states was theorized by Peter Shor and
demonstrated for nine entangled qubits.110 The materialization of Cat,
GKP, and cluster state theory created another avenue of error detec-
tion, analysis, and correction in QIP schemes. The prospect of creating

FIG. 8. Applications in the spectral domain. (A) Image of a custom-poled KTP crystal with an approximately Gaussian nonlinearity profile. Reproduced with permission from
Opt. Express 19, 55–65 (2011). Copyright 2011 Optica Publishing Group.95 (B) Comparison of phase-matching functions (top), joint spectral amplitudes (bottom) for different
apodization schemes. Reproduced with permission from Dosseva et al., Phys. Rev. A 93, 013801 (2016). Copyright 2016 American Physical Society.96 (a) Standard first-order
periodically poled crystal (no apodization). (b) Customized duty cycle method.97 (c) Custom-poled crystal generated using simulated annealing. (C) Theoretical (a) and experi-
mentally measured (b) joint spectral intensity using domain-engineered crystal. Reproduced from Morrison et al., APL Photonics 7, 066102 (2022) with the permission of AIP
Publishing.98 (D) JSI from a double-lobe domain-engineered crystal with a modulated pump spectrum: (a) simulated and (b) experimentally measured. Reproduced with permis-
sion from Shukhin et al., Opt. Express 32, 10158–10174 (2024). Copyright 2024 Optica Publishing Group.99 (E) Deleted-domain Gaussian-apodized poling electrode pattern
and two-photon microscopy image of the poled film (right). JSI measured using dispersion-engineered thin-film lithium niobate (left). Reproduced with permission from Xin
et al., Opt. Lett. 47, 2830–2833 (2022). Copyright 2022 Optica Publishing Group.50 (F) Generation of a dual-rail quantum wire in the quantum optical frequency comb.
Reproduced with permission from Graffitti et al., Phys. Rev. Lett. 112, 120505 (2014). Copyright 2014 American Physical Society.100 (a) EPR pairs are created by interactions
in the quantum optical frequency comb of a polarization-degenerate OPO. (b) Quantum graph states. The initial EPR pairs from the OPO (top) turn into a dual-rail CV cluster
state (bottom).
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Cat and cluster states through photon–metasurface interactions was
demonstrated in Ref. 111, providing a potential method for on-chip
integration of error-correction capabilities in such QIP schemes.

Additional advances can be made in QIP by utilizing the combi-
nation of inverse design methods and emerging 3D poling techniques
to achieve high-dimensional and optically controlled quantum states,
as demonstrated in Fig. 6. Integrating high-frequency modulators into
such optical designs could breed a new practical method processing of
light signals.
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