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Observation of a phase space horizonwith
surface gravity water waves

Check for updates

Georgi Gary Rozenman1,2,3,8 , Freyja Ullinger 4,5,8, Matthias Zimmermann 4,8, Maxim A. Efremov4,5,
Lev Shemer 6, Wolfgang P. Schleich 5,7 & Ady Arie 1

In 1974, Stephen Hawking predicted that quantum effects in the proximity of a black hole lead to the
emission of particles and black hole evaporation. At the very heart of this process lies a logarithmic
phase singularity which leads to the Bose-Einstein statistics of Hawking radiation. An identical
singularity appears in the elementary quantumsystemof the inverted harmonic oscillator. In this Letter
we report the observation of the onset of this logarithmic phase singularity emerging at a horizon in
phase space and giving rise to a Fermi-Dirac distribution. For this purpose, we utilize surface gravity
water waves and freely propagate an appropriately tailored energy wave function of the inverted
harmonic oscillator to reveal the phase space horizon and the intrinsic singularities. Due to the
presence of an amplitude singularity in this system, the analogous quantities display a Fermi-Dirac
rather than a Bose-Einstein distribution.

When amassive star collapses, a blackhole1 is born.During the collapse, the
matter is compressed to an infinitesimal small volume of infinite density
leading to a singularity in spacetime, surrounded by a domainwhere gravity
is strong enough to capture light. This area is bounded by an event horizon
dividing spacetime into two disjunct regions.

Since light cannot escape, one might think that black holes are black1.
However, Hawking2,3 postulated that a black hole emits radiation with a
spectrumgoverned by the Bose-Einstein distribution and similar to that of a
black body. This phenomenon is a direct consequence4–6 of quantum field
theory and the curvature of spacetime at the event horizon of the black hole.
Essential for the so-called Hawking radiation is a logarithmic phase
singularity7,8 in the mode functions of the quantized light field. Indeed, the
characteristic Bose-Einstein distribution is a consequence8 of the Fourier
transformof this phase, aswas already discussed back in 1974 in the seminal
paper of Hawking2.

In order to study quantum effects of this type, access to a black hole is
not mandatory.Many analog systems such as negative-frequency waves9–12,
Bose–Einstein condensates13, optical fibers14, and shallow water waves15 are
experimentally accessible. While the focus of these works lies on the

observation of effects similar toHawking radiation, herewe are interested in
themeasurement of its origin8,16, that is, of the logarithmic phase singularity
in amode function close to an event horizon. For this purpose, we exploit an
analogy between a black hole and an inverted harmonic oscillator17,18. The
energy eigenfunctions of this system also display19 a horizon with a loga-
rithmic phase singularity, however, now in phase space. Since this phe-
nomenon only takes place in specific phase space variables, we use the free
time evolution of these energy wave functions to bring out the effects of this
phase space horizon most clearly. This technique also allows us to show
experimentally that for the inverted harmonic oscillator, the energy dis-
tribution associated with this horizon is of the Fermi–Dirac rather than
Bose–Einstein type.

Inourarticle,weuse theone-dimensional invertedharmonicoscillator as
a system to study black hole physics. For this purpose, we describe its inherent
properties such as the phase space horizons, the logarithmic phase singularity,
as well as the Fermi–Dirac distribution. We demonstrate how a free propa-
gation of its quantum-mechanical energy eigenfunctions enables an obser-
vationof these features inposition space.Wepresentanexperimentbasedona
classical analog of a quantum system by employing surface gravity water
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waves20,21. Our measurements confirm the predicted horizon as well as the
associated singularities and allow us to extract the Fermi–Dirac distribution.

Results and discussion
Phase space horizons, logarithmic phase singularity, and
Fermi–Dirac distribution
We start by reviewing the classical dynamics of a particle moving in an
inverted parabolic potential. As shown in Fig. 1a (bottom), for energies E
below the topof the barrier, that is,E < 0, the particle is reflected,whereas for
energies above, that is, E > 0, it is transmitted. When the energy is equal to
the maximum of the barrier, that is, E = 0, the particle approaches the top
and cannot cross over to the other domain.

This particular dynamic gives rise to four disjunct regions in phase
space, which are separated by the lines p =mωx and p =−mωx, as depicted
in Fig. 1a (top). Herewe have introduced the position x and themomentum
p of the particle, while m and ω denote its mass and the steepness of the
parabolic potential, respectively. The line p =mωx separates particles
coming from the left from particles coming from the right, and thus cor-
responds to a horizon in phase space.

However, the line p =−mωx also represents a horizon in phase space.
This fact stands out most clearly in Fig. 1(b), where we present the corre-
sponding quantum picture17 of the energy eigenfunction

ϕþε ðxÞ � N þðεÞD�1=2�iε 2e�i3π=4κx
� �

ð1Þ

of the inverted harmonic oscillator with a positive energy eigenvalue ε, by
depicting the corresponding Wigner function19,22Wþ

ϕ;ε ¼ Wþ
ϕ;εðx; pÞ. Here

N þ and Dν denote the normalization constant and the parabolic cylinder
function23. Moreover, the scaling parameter κ ensures that the argument of
Dν is dimensionless. For more details, we refer to the Methods section.

The Wigner function Wþ
ϕ;ε vanishes in a half-plane of phase space

separated by the horizon p =−mωx, is constant along all classical trajec-
tories in the other half-plane and, in particular, along the horizon, while
displaying a dominant positive maximum (red domain) in the neighbor-
hood of the trajectory corresponding to the eigenvalue ε. It oscillates

between positive and negative values for trajectories (yellow and blue
hyperbolic bands) determined by energies larger than the eigenvalue, but
decays with oscillations for trajectories (light blue and yellow domains)
governed by negative energies reaching into the classically non-accessible
quadrant.At the bottom,we display the probabilities in the position variable
x obtained by integration of theWigner function over themomentum p at a
given coordinate.

We emphasize that the energy eigenfunction ϕþε ¼ ϕþε ðxÞ in position
representation defined by Eq. (1) does not give any indication of a singular
behavior. However, as shown in the Methods section, a logarithmic phase
singularity and an amplitude singularity manifest19 themselves in a specific
representation of the corresponding state.

To uncover these features, we now make use of the free time
evolution24, which translates to a sheering in phase space as shown in the
transition from Fig. 1b–d. The situation in Fig. 1c depicts the moment
tþc � 1=ω in time,where theWigner function is constrained to the right side
of x = 0. In this case, the position density is restricted to positive values of x
only, with an inverse square-root amplitude and a logarithmic phase sin-
gularity as expressed by the wave function

ϕþε x; tþc
� � ¼ 2πjxjð Þ�1=2eiε log∣κx∣þiφΘ κxð Þ ; ð2Þ

where φ is a phase and Θ denotes the Heaviside step function.
The square-root amplitude singularity in this probability amplitude is a

consequence of integrating the constant Wigner function at x = 0 over the
momentum. For more details, we refer to the Methods section. At a later
time, shown in Fig. 1d, the probability density returns to the domain x < 0,
and covers again the complete coordinate axis.

Next, we recall that the Bose–Einstein statistics of the Hawking
radiation is a consequence8,19 of the Fourier transform of the logarithmic
phase singularity. In order to obtain its analog for the inverted harmonic
oscillator, we could make use of the backward propagation of the wave
functionϕþε ðxÞ until the critical time t�c ¼ �1=ω. Instead, we consider here
the forward propagation of the energy eigenfunction ψþ

ε ðxÞ � ϕþε ðxÞ
� ��

determined by the complex conjugate of Eq. (1), which also allows us to
extract the analog distribution for the inverted harmonic oscillator.Here the

Fig. 1 | Emergence of a horizon in phase space and an amplitude singularity in the
free time evolution of an energy eigenstate of the inverted harmonic oscillator.
a Phase space trajectories of classical particles (top) approaching a parabolic barrier
V(x) (bottom) from the left (right) are represented by the blue (green) and red
(orange) hyperbolas. Depending on their energy E the particles are transmitted
(E > 0) or reflected (E < 0). For E = 0, they define a horizon in phase space (black),
which separates the different energy domains. b Phase space representation of a
quantum particle (top) with energy ε corresponding to the energy wave function,
Eq. (1), as a function of position x and momentum p. In the neighborhood of the
classical trajectory corresponding to the energy E = ℏωε, the corresponding Wigner

function Wþ
ϕ;εðx; pÞ has a dominant maximum (red). In contrast to a classical par-

ticle, the Wigner function covers two domains in phase space due to tunneling. The
horizons confine theWigner function to one half-plane in phase space.We show the
corresponding position distribution jϕþε ðxÞj2 (bottom) resulting from integration
over the momentum variable. The time evolution of such a Wigner function in the
absence of any potential is governed by a sheering in phase space. c At a particular
time t ¼ tþc an amplitude singularity emerges in the position distribution while the
horizon at x = 0 separates vanishing fromnon-vanishing parts. dAt later times t > tþc
the singularity disappears, and the position distribution extends again over the
complete x-axis.
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vanishing and non-vanishing parts of the corresponding Wigner function
are separated by the horizon p =mωx in phase space.

As demonstrated in theMethods section, whenwe propagate the wave
function ψþ

ε ¼ ψþ
ε ðxÞ up to the critical time tþc , we obtain the Fermi–Dirac

distribution25FðεÞ � ½1þ expð2πεÞ��1 determining the transmission and
reflection coefficientsT(ε) = F(−ε) andR(ε) = F(ε) of the invertedharmonic
oscillator from the expression

∣ψþ
ε ðx; tþc Þ∣

2 ¼ ð2πjxjÞ�1 RðεÞΘ κxð Þ þ TðεÞΘ �κxð Þ½ � : ð3Þ

For a given energy ε, the steepness of the position distribution associated
with the simplepole at x = 0determinesR andT, and thusF. Indeed, positive
x-values yieldR(ε) while negative ones lead toT(ε).We find the dependence
ofR andT, and thus ofF on ε, by propagatingwave functions corresponding
to different energies.

Experimental observation with surface gravity water waves
In order to observe the predicted phenomena19 of a logarithmic phase
singularity and a Fermi–Dirac distribution in the reflection and transmis-
sion coefficients of the inverted harmonic oscillator, we take advantage of
the concept of analog experiments14,26,27 and utilize the analogy between the
propagation of quantum-mechanical waves and surface gravity water
waves20,21,28. In the co-moving frame with group velocity cg, the water waves
are governed by a wave equation that corresponds to the Schrödinger
equation, where time and space are interchanged. This analogy enables us to
transfer the wave properties of the quantum-mechanical problem to purely
classical waves29. Moreover, in contrast to a quantum system, we can
measure simultaneously their amplitude and phase20. For a more detailed
discussion of the quantum analogy of surface gravity water waves, we refer
to ref. 21 and the Methods section.

Figure 2 shows a schematic illustration of our experimental setup. A
wavemaker at one end of thewater tank, which is 5m long, 0.4mwide, and

0.19m deep, creates the initial wave packet that propagates along the water
tank. Four capacitance type of wave gauges record the surface elevation,
which corresponds to the complex envelope A � jAj expðiφAÞ. Hence, the
imaginary part ofA follows29 from theHilbert transform30 of the real-valued
elevation, see Methods section for more details.

In our experiments, we modulate the envelope of the surface gravity
water wave to achieve the desired wave packet by the real function
hðt; x ¼ 0Þ � a0jAðtÞj cosðΩ0t þ φAÞ, where a0 is the amplitude of the
carrier wave with frequency Ω0. In the Methods section, we present a
comprehensive discussion on the generation of the truncated stateA =A(t).
Within this context, we have already made the necessary interchange
between time t and position x, in accordance with the requirements of the
water wave equation.

We measured the time-dependent elevations of the wave at different
positions in the tank and stored them in a computer. The data recorded at
the endof the canalwas sent to thewavemaker for a newexcitationbasedon
the previous measurement31. This process was repeated 4 times, enabling to
achieve an effective propagation distance of 11m in a 5m long water tank.

In Fig. 3a, b, we compare and contrast the numerical simulation and
the experimental results for the envelope of this free propagation. We
prepare a surface gravity water wave corresponding to the wave packet, Eq.
(1), with ε = 0.25 at x = 0. The free propagation of this wave packet leads to
focusing at x = 10.4m (red spot), indicating the amplitude singularity. From
the raw data of the wave packets exemplified by (i) and (ii) andmeasured at
the two positions indicated in (d) by arrows, we reconstruct the amplitude
(c) and the phase (d) of the wave packet along the horizontal axis t = x/cg.
Here, dots represent experimentally obtained values and the blue lines are
numerical solutions of the truncated initial envelopewith the same temporal
truncation length as used in the experiments. The red curves represent
analytical expressions outlined in the Methods section.

These results bring out most clearly the square-root singularity in the
amplitude as well as the onset of logarithmic phase singularity. They not
only manifest themselves along the spatial axis but also in the orthogonal
direction, as shown in Fig. 3e, f, where the black curves represent the
experimental values of amplitude and phase while the blue and red curves
correspond to the simulation and analytical expressions, respectively.
However, we note that in a truncated system, the expected growth does not
exhibit full divergence. Rather, the amplitude peak tends to exhibit a
smoother or flattened profile. Moreover, the phase singularity in such a
system is influenced by truncation. In the context of an infinite wave packet,
one would anticipate the logarithmic phase singularity tomanifest as a clear
divergence. However, the inherent finiteness of a truncated wave packet
restricts this manifestation. Further details and methodologies associated
with this observation can be found in the Methods section.

Our system also allows us to deduce the dependence of the reflection
and transmission coefficients32 on the energy reminiscent of the Fermi–Dirac
distribution25 F displayed in Fig. 4. For this purpose, we prepare the complex
conjugate of the wave function defined by Eq. (1), and consider the propa-
gation along the canal up to the position x = 10.4m where the singularity
emerges, andmeasure the transverse distribution of the amplitude envelope.
For afixedenergy ε,weobserve theamplitudes exemplified inFig. 4a, c for the
energies ε=−0.4 and ε= 0.4. This procedure applied to different energies
yields the experimental values (open circles) in Fig. 4b which agree well with
the theoretical prediction (solid lines) of the Fermi–Dirac distribution.

Conclusions
In our article we have employed the similarity of the wave equations for
quantum and surface gravity water waves to bring out the essence of
Hawking radiation. Indeed, in our experiment, we observe thefingerprint of
the logarithmic phase singularity emerging analogously at the event horizon
of a black hole. For this purpose, we take advantage of the phase space
horizons of the inverted harmonic oscillator. Here the logarithmic phase
singularity manifests itself in the corresponding energy eigenfunctions and
appears in phase space variables, that are not easily accessible. We
emphasize that the observation of this effect does not require the presenceof

Fig. 2 | Experimental setup for generating wave packets of surface gravity water
waves and measuring their propagation dynamics in both amplitude and phase.
Illustration of a laboratory water wave tankmeasuring 5 m in length, 0.4 m in width,
and 0.19 m in depth. The tank is constructed with a transparent glass sidewall and
base, enclosed in an aluminum frame, and mounted on eight shock-absorbing legs
for stability. A computer-controlled wave maker at one end generates water waves,
while a wave energy absorbing beach at the opposite end minimizes residual
reflections. Wave dynamics within the tank can be observed from all angles due to
the tank’s transparency. The instantaneous elevation of the water surface is mon-
itored by four-wave gauges mounted on amovable bar, facilitating precise wave field
analysis.
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a potential barrier, but instead a free propagation of appropriately tailored
initial wave packets. Although we are only able to prepare truncated wave
packets our experimental results allow a clear identification of amplitude
and phase singularities as appearing in an ideal system.

We point out that a square-root amplitude singularity is absent in the
mode functions of the light field around the black hole. For this reason, we
have observed a Fermi–Dirac rather than a Bose–Einstein distribution

governing the transmission and reflection coefficients of the inverted har-
monic oscillator.

These insights open pathways to another branch of experiments in
black hole analogs thatwill propel our understanding ofHawking radiation.
At the same time, many open questions emerge, and it suffices to mention
only three: What would be an analog experiment to simulate the particle
creation3 in the ergosphere of a rotating black hole? Is there a deeper
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Fig. 3 | Experimental observation of a horizon in phase space giving rise to
amplitude and logarithmicphase singularities in surface gravitywaterwaves.The
free propagation of the energy eigenfunction of the inverted harmonic oscillator
determined by Eq. (1) with ε = 0.25 displays in the simulation (a) as well as in the
experiment (b) a singularity at t = x/cg and x = 10.4 m, indicated by the orange arrows.
Bright and dark colors represent large and small values of the elevation, as indicated by
the color bars on the right side. Our analysis is based on the rawdata exemplified in (i)
and (ii), yielding the amplitude (c) and the phase (d) of the water wave along the

horizontal axis at t = x/cg. The experimental data (white dots), together with simula-
tions (blue) and analytical predictions (red) given by Eq. (2), show both an amplitude
and a logarithmic phase singularity at x = 10.4m. In e, f, we display the transverse
amplitude and phase at x = 10.4m and compare the observation (black), simulation
(blue), and analytical predictions (red). The horizon at t = x/cg separates a vanishing
amplitude (t < x/cg) fromnon-vanishing contributions (t > x/cg), which also display an
amplitude and a logarithmic phase singularity.
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connection between the singularities and spin? Could black hole physics
open a window toward the spin-statistics theorem33,34?

Methods
In this section we briefly summarize elements of the quantum description19

of the inverted harmonic oscillator crucial for our article, and review key
properties of surface gravity water waves20. In addition, we provide an
extensive overview of the experimental techniques which were used to
perform the experiments.

We start by re-deriving the amplitude and the logarithmic phase sin-
gularities in the energy wave functions of the inverted harmonic oscillator
expressed in rotated phase space variables. Then, we recall the corre-
sponding Wigner functions as well as the reflection and transmission
coefficients. Moreover, we demonstrate that the singularities manifest
themselves in space and time during the free propagation of these wave
functions. We also address the limitations observed in truncated Weber
wave packets.

We then turn to the discussion of the experimental details. In parti-
cular, we introduce the Schrödinger-like wave equation for surface gravity
waterwaves andoutline the conditionsunderwhich it is valid. Subsequently,
we delve into themethods of extracting phase and amplitude data using the
Hilbert transform, and present the primary features of our experimental
setup, such as the water tank, the computer-controlled wavemaker, and the
use of capacitance-typewave gauges. The section concludeswith a summary
of the experimental protocol to generate and observe truncatedWeberwave
packets and their properties.

Energy wave functions
The quantum inverted harmonic oscillator of mass m and steepness ω is
described by the Hamiltonian

Ĥ � p̂2

2m
� 1

2
mω2x̂2 ð4Þ

where the position operator x̂ and the momentum operator p̂ satisfy the
familiar commutation relation ½x̂; p̂� ¼ i_.

Next, we introduce the dimensionless operators

ξ̂ �
ffiffiffiffiffiffiffi
mω

2_

r
x̂ � p̂

mω

	 

ð5Þ

and

η̂ �
ffiffiffiffiffiffiffi
mω

2_

r
x̂ þ p̂

mω

	 

; ð6Þ

satisfying the commutation relation ½ξ̂; η̂� ¼ i.
The operators ξ̂ and η̂ are intimately related to the familiar annihilation

and creation operators â and ây of the standard harmonic oscillator by the
transformation ω→ iω and an overall phase factor. Hence, ξ̂ and η̂ are
Hermitian operators whereas â and ây are non-Hermitian ones.

In terms of ξ̂ and η̂, the Hamiltonian given by Eq. (4) takes the sym-
metric form

Ĥ ¼ � _ω

2
ξ̂η̂þ η̂ξ̂
� �

: ð7Þ

Subsequently, the familiar eigenvalue equation

Ĥ∣εi ¼ _ωε∣εi ð8Þ

determines the energy eigenstates ∣εi corresponding to the dimensionless
energy eigenvalue ε.

According to Eq. (7), the projection Φε(η)≡ 〈η∣ε〉 of the energy
eigenstate ∣εi onto the eigenstates ∣η� of the operator η̂, Eq. (6), allows us to
express the eigenvalue equation, Eq. (8), as the differential equation19

η
d
dη

ΦεðηÞ ¼ � 1
2
þ iε

	 

ΦεðηÞ ð9Þ

which is solved by the two orthogonal functions

Φ±
ε ðηÞ �

1ffiffiffiffiffi
2π

p ∣η∣�
1
2eiε log∣η∣Θð± ηÞ; ð10Þ

where Θ denotes the Heaviside step function.
Analogously, the ξ-representationΨε(ξ)≡ 〈ξ∣ε〉 of an energy eigenstate

∣εi with regard to an eigenstate ∣ξi of the operator ξ̂ given by Eq. (5) is
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Fig. 4 | Experimental observation of the Fermi-Dirac distribution with surface
gravity water waves. The free propagation of the energy eigenfunction of the
inverted harmonic oscillator, determined by the complex conjugate of Eq. (1), results
in an amplitude singularity at x = 10.4 m and t = x/cg. In a we display the amplitude
singularity for an initial wave packet below the parabolic barrier (ε =−0.4). We
present the observation (black) together with the simulation (blue) and the analytical
prediction (red). The transmission and reflection coefficients T(ε) and R(ε) are
extracted following Eq. (3) from the measured amplitude at x = 10.4 m by fits along
the transverse coordinate for t < x/cg and t > x/cg, respectively. b We recover the

dependence ofT (green) andR (orange) on ε by varying the energy of the initial wave
packet. Here the open circles represent the experimentally obtained values in
comparison to the analytical expressions (solid lines), given by R(ε) = F(ε) and
T(ε) = F(−ε) where FðεÞ � ½1þ expð2πεÞ��1 represents the Fermi–Dirac distribu-
tion. c For an initial wave packet above the parabolic barrier (ε = 0.4), we observe a
mirror image of a at t = x/cg for the analytical prediction (red) and numerical
simulation (blue) leading to the symmetry of the transmission T and reflection
coefficient R with respect to the energy eigenvalue ε = 0.
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determined by the differential equation

ξ
d
dξ

ΨεðξÞ � � 1
2
� iε

	 

ΨεðξÞ ð11Þ

which yields the set of orthogonal solutions

Ψ±
ε ðξÞ ¼

1ffiffiffiffiffi
2π

p ∣ξ∣�
1
2e�iε log∣ξ∣Θð± ξÞ: ð12Þ

Expressed in the rotated phase space coordinates η and ξ, the horizons
inherent in the stationary states of the invertedharmonic oscillator standout
most clearly. In fact, both sets of linearly independent solutionsΦ±

ε andΨ±
ε

in η- and ξ-representation, respectively, have a similar functional depen-
dence, differing only by the sign in front of ε. These energy eigenfunctions
display a square-root amplitude singularity which is a consequence of the
canonical commutation relation, and a logarithmic phase singularity at the
horizons in phase space at η = 0 and ξ = 0, respectively, expressed by the
Heaviside step function Θ.

We note that in ξ-representation each energy eigenstate ∣εi can be
expressedas a superpositionof the eigenfunctionsΨþ

ε andΨ�
ε .Analogously,

in η-representation ∣εi can be decomposed into a superposition of the
eigenfunctionsΦþ

ε andΦ�
ε . Moreover, we emphasize that the horizon and

the logarithmic phase singularity in the energy eigenfunctions only become
apparent in the coordinates ξ and η.

In fact, in position representation, the energy eigenfunctions

ϕ±
ε ðxÞ � N þðεÞD�1=2�iε ± 2e�i3π=4κx

� �
ð13Þ

and

ψ ±
ε ðxÞ � N �ðεÞD�1=2þiε ± 2ei3π=4κx

� �
ð14Þ

corresponding to Eqs. (10) and (12), respectively, do not display a loga-
rithmic phase singularity nor a horizon. Instead, these functions are gov-
erned by a parabolic cylinder function23 Dν(z) and a normalization factor

N ± ðεÞ �
Γ 1

2 ± iε
� �
ffiffiffi
2

p
π

κ1=2eεπ=4 : ð15Þ

Here, we have introduced the scaling factor

κ �
ffiffiffiffiffiffiffi
mω

2_

r
: ð16Þ

Finally, we point out that the horizons in the inverted harmonic oscil-
lator become evident in a phase space representation. Indeed, in complete
analogy to the energy eigenfunctionsΨ±

ε andΦ±
ε , theWigner functions17,22

W ±
Φ;εðξ; ηÞ ¼

1
2π

wεðξηÞΘð± ηÞ ð17Þ

and

W ±
Ψ;εðξ; ηÞ ¼

1
2π

wεðξηÞΘð± ξÞ ð18Þ

with the weight function19

wεðhÞ ¼
1
π

Z 1

�1
dy

exp �iε log∣ 1þy
1�y∣

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ei2hy ð19Þ

display a horizon in phase space. Consequently, the Wigner function
Wþ

Φ;ε corresponding to the wave function Φþ
ε , Eq. (10), vanishes on

the half plane η < 0, while it depends only on the product ξη in the
other half plane η > 0. Analogously, the Wigner function Wþ

Ψ;ε corre-
sponding to the wave functionΨþ

ε , Eq. (12), vanishes on the half plane
ξ < 0, while it depends only on the product ξη in the other half-
plane ξ > 0.

Moreover, by making use of the c-number relations for ξ and η cor-
responding to Eqs. (5) and (6), we are able to obtain the Wigner functions

W ±
ϕ;εðx; pÞ � W ±

Φ;ε

ffiffiffiffiffiffiffi
mω

2_

r
x � p

mω

� �
;

ffiffiffiffiffiffiffi
mω

2_

r
x þ p

mω

� �� 
ð20Þ

and

W ±
ψ;εðx; pÞ � W ±

Ψ;ε

ffiffiffiffiffiffiffi
mω

2_

r
x � p

mω

� �
;

ffiffiffiffiffiffiffi
mω

2_

r
x þ p

mω

� �� 
ð21Þ

in terms of the position x and the momentum p.

Free propagation
Next, we consider the free propagation of an arbitrary energy eigenfunction

φεðxÞ � cþϕ
þ
ε ðxÞ þ c�ϕ

�
ε ðxÞ ð22Þ

of the inverted harmonic oscillator, expressed as a superposition of the
orthogonal energy eigenfunctions ϕ±

ε , Eq. (13), with complex coefficients c±
that satisfy the normalization condition ∣c+∣2+ ∣c−∣2 = 1. Consequently, the
time-evolved wave function φ = φ(x, t) is obtained as solution of the
Schrödinger equation

i_
∂

∂t
φðx; tÞ ¼ � _2

2m
∂2

∂x2
φðx; tÞ ð23Þ

with the initial condition φ(x, 0)≡ φε(x).
In the following we demonstrate that the function φ(x, t)

reveals an amplitude as well as a phase singularity at the
times t ±c � ± 1=ω.

Indeed, the solution of Eq. (23) given by the Fresnel transform

φðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

2πi_t

r Z
dxi exp

im
2_t

x � xi
� �2� 

φε xi
� � ð24Þ

takes the explicit form

φðx; tÞ ¼

1� ðωtÞ2
�� ���1

4 exp � iε
2
log

1þ ωt
1� ωt

����
����� im

2_t
ðωtÞ2

1� ðωtÞ2 x
2

	 

φε

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣1� ðωtÞ2∣

p
 !

ð25Þ

for t�c < t < tþc , being valid for any energy eigenfunction φε.
For t > tþc we instead obtain the expression

φðx; tÞ ¼

1� ðωtÞ2
�� ���1

4 exp � πε

2
� iπ

4
� iε

2
log

1þ ωt
1� ωt

����
����� im

2_t
ðωtÞ2

1� ðωtÞ2 x
2

	 

φε

�ixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðωtÞ2
�� ��q

0
B@

1
CA
ð26Þ

which holds again for any energy eigenfunction φε. We point out that
Eq. (25) is reminiscent of the one obtained24 for the free time evolution
of a symmetric energy eigenfunction of the standard harmonic
oscillator.
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In addition, at the center x = 0, the wave packet

φð0; tÞ ¼

1� ðωtÞ2
�� ���1

4 exp � iε
2
log

1þ ωt
1� ωt

����
����

	 

φεð0Þ

1 for � t�c <t<t
þ
c

exp � πε
2 � iπ

4

� �
for t>tþc ;

(

ð27Þ

displays both an amplitude and a phase singularity at time t ¼ t ±c .
So far,wehaveonly studied the behavior of thewave functionφ(x, t) for

t�c < t < tþc and t > tþc , that is, before and after the emergence of the singu-
larity. In order to examine the wave function in the limit t ! t ±c , we now
analyze different options for the initial energy eigenfunction φε at t = 0.
Indeed, we demonstrate that (i) for φε ¼ ϕþε , Eq. (13), a horizon and the
logarithmic phase singularity is revealed at t ¼ tþc , while (ii) for φε ¼ ψþ

ε ,
Eq. (14), we are able to extract the transmission and reflection coefficients of
the invertedharmonicoscillator at time t ¼ tþc , whichare reminiscent of the
Fermi–Dirac distribution.

The horizon and the logarithmic phase singularity
In order to transfer the horizon and the logarithmic phase singularity of the
inverted harmonic oscillator hidden in the variables η and ξ to the position
coordinate, we consider the free time evolution of a particular energy
eigenstate ∣εi, whose η-representation Φþ

ε ðηÞ is given by Eq. (10). For this
purpose, we prepare at t = 0 the energy eigenfunction

ϕþε ðxÞ � N þðεÞD�1=2�iε 2e�i3π=4κx
� �

ð28Þ

defined by Eq. (13), where the normalization constant NþðεÞ is given by
Eq. (15).

In the limit t ! tþc , we obtain according to Eqs. (25) and (26) the
probability amplitude

ϕþε x; tþc
� � ¼ e�iπ=8ffiffiffiffiffiffiffiffiffiffiffi

2πjxjp eiðκxÞ
2=2þiε log∣κx∣Θ κxð Þ ð29Þ

and consequently, the probability density

ϕþε x; tþc
� ��� ��2 ¼ 1

2πjxjΘ κxð Þ: ð30Þ

Indeed, at the time t ¼ tþc we are able to observe the logarithmic phase
singularity aswell as thehorizonof the energywave functionΦþ

ε , Eq. (10), in
the position variable x. Moreover, apart from a phase quadratic in x, the
overall form of the propagated wave function given by Eq. (29) is remi-
niscent of the initial wave functionΦþ

ε in the η-coordinate given byEq. (10).
We emphasize that a similar treatment for Ψ±

ε reveals a logarithmic
phase singularity and a horizon in the position coordinate at t ¼ t�c , which
is obtained by a free time evolution backward in time.

Influence of truncation parameter
We emphasize that in an idealized scenario, the infinite extension of the
energy eigenfunctions of the inverted harmonic oscillator employed as an
initial wave packet leads to singularities in both amplitude and phase during
freepropagation.However, in a realistic experimental setup, an infinitewave
packet is unattainable and thusmust be truncated. For the sake of simplicity,
we employ for the truncation a rectangularwindowofwidth 2γ leadingus to
the initial wave function

ϕþε ðx; γÞ � Θðγ� κjxjÞϕþε ðxÞ ð31Þ

prepared at time t = 0.
This truncation has consequences for the singularity appearing at time

t ¼ tþc in the free propagation ϕþε ðx; t; γÞ of the initial wave function

ϕþε ðx; γÞ as shown inFig. 5. The truncation of thewave packet imposesfinite
boundaries, which inherently limits the growth of the wave amplitude. In a
theoretical infinite wave packet, the amplitude could grow without bound,
leading to a singularity.When truncated, this growth is stymied, and instead
of a true divergence, a smoothing orflattening of the amplitude peakmay be
observed. In order to bring this outmost clearly, we showagain in Fig. 6a the
influence of the truncation parameter on the amplitude at t ¼ tþc for the
chosen parameters.

A similar behavior is observed for the phase singularity as indicated by
Fig. 6b. In an infinite wave packet, the logarithmic phase singularity would
manifest itself as a divergence, but the finite nature of a truncated wave packet
constrains this behavior. The result is a tempered, less pronounced phase shift,
whichstill followsa logarithmic trendbutwithoutexhibitingaclear singularity.

Fermi–Dirac distribution
Next, we show that the free time evolution not only reveals the inherent
horizon and logarithmic phase singularity of the inverted harmonic oscil-
lator, but also the characteristic transmission and reflection coefficients of
the parabolic barrier. For this purpose, we make use of the energy wave
functionsΨ±

ε , Eq. (12), which display a logarithmic phase singularity and a
horizon in the ξ-representation.

According to Eq. (14), we thus prepare at time t = 0 the initial wave
function

ψþ
ε ðxÞ � N �ðεÞD�1=2þiε 2ei3π=4κx

� �
; ð32Þ

where the normalization factorN�ðεÞ is given by Eq. (15).
At time t ¼ tþc , the time-evolved wave function

ψþ
ε ðx; tþc Þ ¼ SþðεÞΔþ

ε ðxÞ þ S�ðεÞΔ�
ε ðxÞ ð33Þ

is governed by the position-dependent functions

Δ±
ε ðxÞ �

κ1=2ffiffiffiffiffi
2π

p eiðκxÞ
2=2�iπ=8∣κx∣�1=2þiεΘ ± κxð Þ ð34Þ

with energy-dependent coefficients

S± ðεÞ �
Γ 1

2 � iε
� �
ffiffiffiffiffi
2π

p exp ∓
επ

2
þ iπ

4

	 
� 
: ð35Þ

Consequently, the function ψþ
ε ðx; tþc Þ consists of two distinct contributions

in the domains x < 0 (−) and x > 0 (+), which are separated by a singularity
at x = 0.

In terms of the probability density

ψþ
ε ðx; tþc Þ

�� ��2 ¼ 1
2πjxj

Θ κxð Þ
1þ e2πε

þ Θ �κxð Þ
1þ e�2πε

� 
; ð36Þ

the respective regions in position are associatedwith either the transmission
coefficient

jS�ðεÞj2 ¼
1

1þ e�2πε
� TðεÞ; ð37Þ

or the reflection coefficient

jSþðεÞj2 ¼
1

1þ e2πε
� RðεÞ ð38Þ

of the parabolic scattering potential. Consequently, by propagating the
energy eigenfunctionψþ

ε for different values of ε during the time t ¼ tþc , we
uncover the characteristic transmission and reflection coefficients32T andR
of the inverted harmonic oscillator.
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Fig. 5 | Influence of the truncation of the initial
wave packet ϕþ

ε ðx; γÞ on the amplitude for three
values of the truncation parameter γ. For finite
values of γ, that is, a truncated initial Weber wave
packet, illustrated here for a γ = 5 and b γ = 10, the
singularity at x = 0 is smoothed out. Only for γ =∞
in c we obtain a divergence at t ¼ tþc and x = 0,
indicating the amplitude singularity.

Fig. 6 | Influence of the truncation of the initial
wave function on the amplitude and phase sin-
gularity. At time t ¼ tþc , we display the a amplitude
jϕþε ðx; t ¼ tþc ; γÞj2 and b phase ϑþϵ ðx; t ¼ tþc ; γÞ of
the propagated wave packet with truncation para-
meter γ as a function of the position x. For γ =∞
(red), we obtain the ideal case displaying both sin-
gularities. For the truncation parameters γ = 5 (blue)
and γ = 10 (black) the singularities are blurred and
the respective values become finite.
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At this point, it is worthwhile mentioning that T(ε) and R(ε)
resemble a particular quantum statistics, namely the Fermi–Dirac19

distribution. In fact, it is the presence of the amplitude singularity in
addition to the logarithmic phase singularity in the energy eigenfunction
of the inverted harmonic oscillator that results in the positive sign in
the denominator of T and R. In contrast, disregarding the amplitude
singularity and solely retaining the logarithmic phase singularity leads to
a negative sign in the denominator, being reminiscent of the
Bose–Einstein statistics.

Surface gravity water waves
In a frame moving with the group velocity cg, the evolution of the slowly
varying complex-valued envelopeA≡A(τ, ζ) of a surfacegravitywaterwave
follows from the wave equation

i
∂A
∂ζ

¼ ∂2A
∂τ2

; ð39Þ

reminiscent29,35,36 of the Schrödinger equation (23) of a free particle, whereA
takes over the role of the wave functionφ and the substitutions t→ ζ, x→ τ,
ℏ→ 1,m→ 1/2, and i→− i have been applied in regard to the quantum-
mechanical case.

The scaled dimensionless variables ζ and τ are related to the propa-
gation coordinate x and the time t for the surface gravity water waves by
ζ � s20k0x and τ � s0Ω0ðx=cg � tÞ. The carrier wave number k0 and the
angular carrier frequency Ω0 satisfy the deep-water dispersion relation
Ω2

0 ¼ k0g with g being the gravitational acceleration, and define the group
velocity cg≡Ω0/2k0. The parameter s0≡ k0a0 characterizing the wave
steepness is assumed to be small (s0≪ 1) in the linear regime.

Phase and amplitude from Hilbert transform
The time-dependent elevation

hðx; tÞ ¼ a0Aðx; tÞ cos½Ω0t � k0x þ φAðx; tÞ� � a0uxðtÞ ð40Þ

of thewater surface at any point x in the tank involves the envelope function,
characterized by the amplitude A(x, t) and the phase φA(x, t), which both
vary slowly with respect to the carrier wave of frequency Ω0.

The Hilbert transform30

vxðsÞ �
1
π

Z 1

�1
dt

uxðtÞ
s� t

ð41Þ

of the real-valued function ux(t) reduces in our case to

vxðtÞ≈Aðx; tÞ sin½Ω0t � k0x þ φAðx; tÞ�: ð42Þ

Using the Euler formula, we can define the complex function:

zxðtÞ � uxðtÞ þ ivxðtÞ ¼ Aðx; tÞ exp½iφAtot
ðx; tÞ� ð43Þ

with the total phase φAtot
ðx; tÞ � Ω0t � k0x þ φAðx; tÞ and thereby obtain

the amplitude

Aðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uxðtÞ2 þ vxðtÞ2

q
ð44Þ

and phase

φAðx; tÞ ¼ φAtot
ðx; tÞ �Ω0t þ k0x ¼ arctan

vxðtÞ
uxðtÞ

	 

�Ω0t þ k0x

ð45Þ
of the envelope function directly from the measured function ux(t) and its
Hilbert transform vx(t).

To numerically compute the Hilbert transform from the measured
surface elevation data, we use the Matlab toolbox function ’hilbert’.

Experimental facility
The experimental facility consists of three essential ingredients (i) a wave
tank, (ii) a wavemaker, and (iii) wave gauges. In this section, we summarize
important details.

Surface gravitywaterwave tank. Our experiments were performed in a
5 m long, 0.4 mwide, and 0.19 mdeep laboratory wave tank, as illustrated
in Fig. 2. The wave tank is encompassed by an aluminum extrusion frame
and supported by eight shock-absorbing legs. The sidewalls and base of
the wave tank are made of transparent glass to permit flow visualization
of the wave field and the observation of the waves from all angles. At each
end of the test section, openings in the tank floor permit tank filling and
discharging via particle filter. Prior to each experiment, the water surface
was cleaned to remove any surface film that could influence the results.
The use of transparent glass allowed the observation of thewater’s surface
from above, and capacitance-type sensors were inserted into the test
section at any distance from the inlet. The measuring equipment, power
supplies, and sensors are supported by the instruments carriage, which is
constructed of aluminum extrusions and affixed on a rail along the test
section. The position of the carriage along the test section at the intended
fetch and the input at the wave maker are the controlled experimental
parameters.

In our experiments, we have used the carrier frequency Ω0 = 15 rad/s
and the initial amplitude a0 = 2.0 mm.Moreover, k0 satisfies the deep-water
condition21 k0d > π, where d = 0.19m denotes the depth of the tank and the
corresponding steepness is s0 < 0.04 guaranteeing the validity of the linear
Schrödinger equation.More details on the experimental setup can be found
in refs. 20,36.

Computer-controlled wave maker. A mechanical wedge-type wave
maker (Linmot T01-72/420-1ph) is used to generate surface gravitywater
waves. It is composed of a wedge-shaped plate, a motor or actuator, a
frame to hold thewedge, and awater tank. Thewedge plate ismounted on
the frame, and the frame is positioned above the water tank. Themotor or
actuator is connected to the wedge plate, which is positioned at the
surface of the water andmoves back and forth in a reciprocating motion.
As the wedge plate moves, it creates a disturbance in the water, which
generates waves that propagate outwards from the wedge. The size and
frequency of the waves can be adjusted by changing the amplitude and
frequency of the wedge’s motion.

The initial envelope of the surface water gravity wave is determined by
the quantum-mechanical energy eigenfunctions of the inverted harmonic
oscillator. Therefore, the wave packet generated by the wave maker reads

hðt; x ¼ 0Þ ¼ a0jAðtÞj cos Ω0t þ φAðtÞ
� �

; ð46Þ

with the carrier frequencyΩ0 = 15 rad/s and the initial amplitudea0 = 2mm.
Here A =A(t) and φA = φA(t) represent the amplitude and phase of the
eigenfunctions obtained from Eqs. (13) and (14). For this purpose we make
use of the substitutions as defined previously in order to translate quantum-
mechanical variables to the formalism of surface gravity water waves.

Then, the time-dependent elevation of the wave was measured using
wave gauges at different positions in the tank and stored in a computer. This
data was numerically truncated at the location of the next temporal slit, and
was then sent to the wave maker for a new excitation based on the previous
measurement. In this way, we were able to cascade several slits in the time
domain and observe the effect of diffractive guiding.

Capacitance-type wave gauges. We utilize a capacitive wave gauge
transducer consisting of a 0.3 mm thin tantalum wire coated with a
uniform thin layer of tantalum oxide. Before the measurement of the
surface wave height using wave gauges, the calibration of the wave sensor
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is performed in three steps: (i) we first set the vertical position of the wire
wave gauge in such a way that the mean water level is approximately in
the middle of the wire. (ii)We perform automatic calibration of the wave
gauge using a lab-view-made routine by submerging the wave sensor at
different depths and recording the mean voltage for 5 s for each depth.
(iii) Finally, a polynomial fit is applied to the recorded data in order to
find out the dependence betweenmeasured height H[mm] and the gauge
voltage and verify visually the fitted calibration polynomial as shown in
Fig. 7. We note that the analysis of the relationship between height and
voltage in capacitor type wave gauges, the precision ofmeasurements was
evaluated by employing statistical error calculations based on five sepa-
rate measurements for each data point. This approach ensured that the
estimated errors reflect the variability inherent in the experimental setup
andmeasurement process. Notably, the resulting error barswere found to
be smaller than the symbols representing the data points on the plot-
ted graph.

Experimental protocol
In this section, we outline the experimental protocol to generate the trun-
cated Weber wave packets and observe the singularities appearing in Eq.
(10). In particular, we discuss the propagation along the wave tank, and its

recording and transformation into a full complex wave function. The
iterative procedure is repeated until the observation of a singularity in both
amplitude and phase.

We proceed in the following steps:
(i) Generation of truncated Weber wave packet. The Weber wave packet

defined by Eq. (1) is not normalizable. For the experiment, we had to
truncate them to a finite duration in time. The temporal window of
truncationwas carefully chosen basedon experimental constraints and
theoretical predictions. In Fig. 8, we show the full wave packet (black
curve) and the truncated Weber wave packet (red). The truncated
Weber wave packet was generated by the computer-controlled
wave maker.

(ii) Propagation and recording. The so-generated truncated Weber wave
packet was then allowed to propagate along the carefully controlled
water tank. The height of the propagating wave packet, that is the real
part, was recorded using the high-resolutionwave gauges positioned at
specific locations along the tank discussed before.

(iii) Translation into complexwave function. Each recorded real part of the
wave packet envelope was then translated into a full complex wave
function using the Hilbert transform discussed above.

(iv) Reconstructing and sending back to the wave maker. The wave packet
was thenpropagated to thefinal point, xf, recorded, and recreated again
at the wave maker.

(v) Iterativeprocedure and singularity observation.This entireprocesswas
repeated iteratively—each time observing the properties of the pro-
pagated, transformed, and re-sent wave packet. The iteration was
continued until we observed a singularity in both the amplitude and
phase of the wave packet. The criteria for the observation of a
singularity were based on a combination of theoretical predictions and
experimental viability.

Data availability
The datasets generated and/or analyzed during the current study are
available from the corresponding author upon reasonable request.
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Fig. 7 | Set of calibration curves for the four capacitance wave gauges. Compre-
hensive calibration curves for four distinct capacitance wave gauges, detailing
measurements across six different heights (H) in millimeters (mm) and their
respective recorded voltages (V) in volts. Each data point is derived from an average
of five separate measurements at each height to ensure accuracy and reliability. This
experimental data undergoes an analysis through linear regression methods to
establish the relationship between height and voltage accurately. To evaluate the

precision of thesemeasurements, statistical error calculations were employed, which
factored in the variability inherent in the experimental setup and the measurement
process. Notably, the calculated error bars, indicative of measurement precision,
were found to be significantly smaller than the symbols used to represent the data
points on the graph, underscoring the high degree of accuracy in the experimental
findings.
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lines) and the truncated one for a truncation window of 50 s (red solid lines).
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